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Journal of
Fluids

Engineering Editorial

Special Section on the Fluid Mechanics and Rheology of Nonlinear Materials at the Macro, Micro, and Nano Scale

This collection of selected papers are drawn from those pre-
sented at the IMECE 2004 in Anaheim, California at the Sympo-
sia “Rheology & Fluid Mechanics of Non-linear Materials,” “Ad-
vances in Processing Science,” and “Electric and Magnetic
Phenomena in Micro and Nano-Scale Systems” sponsored by the
Fluids Engineering Division and the Materials Division, as well as
the Symposium on “Flows in Manufacturing Processes” held at
the 4th JSME-FED �Japanese Society of Mechanical Engineers–
Fluids Engineering Division of the ASME� joint meeting in Ha-
waii in July 2003. They represent excellent examples of cutting-
edge multidisciplinary research.

This editorial is accompanied by an addendum, “Current Unan-
swered Questions and Future Directions.” I asked the authors in
this special section to contribute their thoughts on yet unexplored
issues they view as important in their respective areas, and they
kindly obliged. I am grateful to those who decided to contribute. I
learned the usefulness of the platform from my friend, the late
Professor Lloyd Trefethen, who put together several very well
received unanswered questions sessions during the meetings of
the FED.

The symposia series centered on the theme of complex fluids
developed as an interdivisional effort in the early nineties, and has
been sustained primarily by the FED, the Materials Division and,
in the early years, the Applied Mechanics Division, with organiz-
ing committees led by Dennis Siginer. Symposia focused on Elec-
troheological Fluids, non-Newtonian and viscoelastic fluids, and
industrial applications were held at every annual winter meeting
of the ASME. A wider scope and a more encompassing recurring
theme were embraced in the mid-nineties, and symposia on the
“Rheology & Fluid Mechanics of Non-linear Materials” have
been held every year since then without interruption. A second
symposia series sponsored by the FED and the Materials Division
addressing issues on “Electric and Magnetic Phenomena in Micro
and Nano-Scale Systems,” of great interest to emerging technolo-
gies and to homeland security, was initiated early in this decade
by Dennis Siginer and Boris Khusid. Two complementary sympo-
sia of interest to industry in materials processing and manufactur-
ing, “Advances in Materials Processing Science” and “Flows in
Manufacturing Processes,” have also been organized regularly for
several years, the former held during IMECE and the latter during
Summer Meetings of the FED.

This collection of papers opens with three contributions related
to micro and nano scale problems. The first two are concerned
with micro fabrication for the manipulation of nanoparticles using
dielectrophoresis, and the third looks into optical finishing using
magnetorheological jet polishing technology for a peak-to-valley
surface accuracy of the order of 30 nm.

Riegelman et al. describe their research on the positioning of
carbon nanotubes at predetermined locations with the use of di-
electric forces and a fabrication technique to construct carbon
nanotube based multiwalled fluidic devices. The technique com-
bines dielectrophoretic trapping with photolithography.

James et al. present a novel separation device based on “dielec-
trophoretic gating” to discriminate between biological and non-

biological analytes captured in air samples. A technique for batch
fabrication of self-sealed, surface micro-machined micro-channels
equipped with dielectrophoretic gates is described. Setting the
gates to a moderate voltage in the MHz-frequency range removes
bacteria cells from a mixture containing non-biological particles.

Kordonski et al. present research on a new polishing technol-
ogy, magnetorheological finishing �MRF�. MRF can produce na-
nometer order surface accuracy and roughness and does not dam-
age the material at the subsurface level, a major disadvantage of
conventional “contact” polishing. However, high precision finish-
ing requires a stable, relatively high-speed, low viscosity fluid jet
which remains collimated and coherent before it impinges the
surface to be polished.

The next group of papers is concerned with flow stability prob-
lems. The stability of the flow in the co-extrusion of multilayered
sheets from a die is a major concern for product quality. Multi-
layered sheets are composite materials with specific physical
properties. Any interfacial instability during the extrusion process
will result in undesirable effects. The behavior of non-Newtonian
fluids in curved pipes of non-circular shape is of great interest and
has not received as yet the attention it deserves, in particular the
Dean instability. Aspects of the Taylor-Couette flow fall in the
same category. Although the elastic instability in Taylor-Couette
flow has received a lot of attention recently, the important sym-
metry breaking effect of an obstruction on the flow relevant to
horizontal oil drilling operations has not.

Rousset et al. study the influence of an interphase on the stabil-
ity of the plane Poiseuille flow of two compatible polymers during
the co-extrusion process. Each layer of these composite materials
provides a specific end-use characteristic, such as optical, me-
chanical, or barrier properties. The authors successfully explain
why stratified flows of compatible polymers are generally more
stable than those of incompatible polymers.

Fellouah et al. investigate numerically the Dean instability of
Newtonian, power-law, and yield stress fluids in curved ducts of
rectangular cross-section with various aspect and curvature ratios.
Curved channels are commonly encountered in turbomachinery
and heat exchangers for heating or cooling systems because of the
extended laminar flow regime and enhanced transverse mixing.
The influence of the aspect ratio and the curvature ratio on Dean
instability is investigated as well as the effect of the power law
index and the Bingham number.

Loureiro et al. investigate the flow inside a horizontal annulus
due to the inner cylinder rotation when the bottom of the annular
space is partially blocked by a plate parallel to the axis of rotation,
as is encountered in the drilling process of horizontal oil and gas
wells. A major problem in this drilling technique is the efficient
removal of the cuttings that settle and accumulate at the lower part
of the annular gap. The objective of the research presented in the
paper is to determine the influence of the partial obstruction on the
flow structure in the gap for low rotational Reynolds numbers,
both for Newtonian and power-law liquids.

Numerical computations with viscoelastic fluids suffer from the
curse of high Weissenberg number limit. Numerical algorithms for
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the solution of flow problems break down for reasons which are
not yet well understood at values of the Weissenberg number
larger than one depending on the type of flow. The source of the
instability does not necessarily stem from the algorithm and/or
may not be grid dependent, although that is a clear possibility, but
it is rather related quite often to the constitutive structure.
Hadamard-type instabilities as well as dissipative instabilities are
the major deficiencies most constitutive equation formulations at
the macro as well as micro level suffer. Over the years consider-
able progress has been made and the Weissenberg limit has been
moved higher, but the problem is far from being completely
solved and is still a burning issue in rheological fluid mechanics.
Similar problems exist in numerical computation of dry granular
flows and dispersed particle flows. The next two papers investi-
gate computational issues with polymeric fluids and granular
flows.

Feigl and Senaratne develop a micro-macro simulation algo-
rithm capable of resolving multiple levels of description to calcu-
late the flow of polymeric fluids. The calculation of the velocity
and pressure fields is performed using standard finite element
techniques, while the polymer stress is calculated from a
microscopic-based rheological model using stochastic simula-
tions.

The capability of the Lagrangian Molecular Dynamics simula-
tion to track individual particles in dispersed particle and dry
granular flows is limited by the computational expense. Con-
tinuum models remove this difficulty, but constitutive relations for
fluid drag and solid drag are needed in the momentum equations
of each particle phase to close the field equations. Gao et al. focus
on particle-particle momentum transfer in a dry bidisperse granu-
lar mixture and perform molecular dynamics simulations of the
mixture to characterize the solid drag.

The thread which connects the following five papers is the
study of the effect of surfactants used as additives on the flow
structure in various settings. Although surfactant solutions exhibit
viscoelasticity, their behavior shows anomalous features and quite
often deviates from the pattern of a closely associated class of
fluids to that of dilute polymeric solutions. A class of motions
which has attracted attention recently is the swirling flow of vis-
coelastic fluids driven from the bottom in cylindrical containers
with either free surface or confined, in particular because of the
vortex breakdown characteristics shaped by the elasticity of the
solution and/or the use of the free surface shape to determine the
constitutive constants of the fluid and characterize the fluid. Be-
cause surfactants do not degrade in shear as polymeric solutions
do due to the stretching of long chains, it has long been advocated
that they can be used in large-scale heating/cooling systems to
save pumping energy through the considerable drag reduction
they induce. Various aspects of these issues are explored in the
next five papers.

In two complimentary papers on the swirling flow of viscoelas-
tic fluids with free surface in cylindrical containers driven from
the bottom, Wei et al. present a detailed experimental investiga-
tion of the structure of the flow and a numerical study. The moti-
vation for these studies lies with the significant drag reducing
ability in turbulent flow of very dilute surfactant solutions of the
order of 70–80% with mass concentrations of only 30 and 75
ppm. In Part I the high Reynolds number swirling flow of water
and a surfactant solution is experimentally investigated using a
double-pulsed particle image velocimetry system. In Part II flow
simulations in laminar regime are presented for both Newtonian

and viscoelastic solutions. The numerical simulations are run for
laminar flow as viscoelastic large-eddy simulation �LES� turbu-
lence models have not yet been developed for viscoelastic solu-
tions. The tested Marker-and-Cell �MAC� method for Newtonian
flow is extended to viscoelastic flow to track the free surface.

In a related paper Itoh et al. investigate the steady confined
swirling flow of viscoelastic fluids in cylindrical containers using
laser Doppler velocimetry. Prominent among the findings in the
paper is the decrease in the azimuthal velocity with increasing
Weissenberg number at any aspect ratio tested. Experimental data
is compared to the numerical predictions based on the Giesekus
and power-law models, both of which can fairly well describe the
retardation in the azimuthal velocity in the range of small Weis-
senberg numbers.

Watanabe et al. use the laser-induced fluorescence �LIF� tech-
nique for visualization of the formation of Taylor vortices in the
gap between two coaxial cylinders. The nonlinear test fluids are
drag-reducing polymeric solutions in various concentrations and
surfactant solutions. Experimental observations show that Taylor
cells form in polymer solutions but not in surfactant solutions with
viscoelastic properties, a puzzle which needs further investigation.

Munekata et al. experimentally investigate by two-dimensional
laser Doppler anemometry the effect of drag-reducing surfactants
in swirling pipe flow. The considerable drag-reducing ability of
surfactants when used as additives to a Newtonian fluid is well
known in straight, non-swirling pipe flow, but in most industrial
applications pipes are not straight. Swirl decay, vortex type, and
turbulence intensity are discussed and compared with the swirling
flow of water.

The last two papers in this collection cover industrially impor-
tant flows in the blow molding film manufacturing process, the
rimming flow on the inside of a horizontal cylinder which presents
a rich variety of fluid mechanics phenomena and flow between
coaxial cylinders driven by an axial pressure gradient as well as
the rotation of the inner cylinder.

Fomin and Hashida present an asymptotic analysis of the coat-
ing of shear-thinning non-Newtonian fluids on the inner surface of
a hollow rotating horizontal cylinder, and derive the runoff con-
dition. The solution for the film thickness is continuous if the
runoff condition is satisfied with subcritical, critical, and super-
critical flow regimes.

Woo et al. present an experimental study of the fully developed
laminar and transitional vortex flow, and in particular of the skin
friction coefficient of Newtonian and shear-thinning fluids in a
concentric annulus driven by the rotating inner cylinder and the
axial pressure gradient. The study is motivated by the importance
in engineering applications of flows in annular passages with a
rotating inner wall such as bearings, rotating-tube exchangers and,
especially, mud flow in the case of slim hole drilling of oil wells.

In closing I would like to express my deepest appreciation to
the Editor of JFE, Professor Joe Katz, for his leadership and for
the opportunity to include this special section among the pages of
this Journal. I would like to again thank the numerous anonymous
reviewers and the authors who made this special section possible.

Dennis Siginer
Associate Editor

e-mail: dennis.siginer@wichita.edu
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Addendum to the Editorial: Unanswered Questions and Future Directions of Research

Unraveling the Behavior of Liquids at the Nanoscale
H. H. Bau
Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA
e-mail: bau@seas.upenn.edu

Y. Gogotsi
Department of Material Science and Engineering, Drexel University, Philadelphia, PA

C. M. Megaridis
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago

J.-C. Bradley
Department of Chemistry, Drexel University, Philadelphia, PA

The behavior of liquids under extreme confinement is of inter-
est from both the scientific and the technological points of view.
Advances in nanotechnology have facilitated the fabrication of
devices in which conduits and pores have hydraulic diameters as
small as a few nanometers. Conduits and pores with nanoscale
dimensions are also ubiquitous in nature. Since the dimensions of
these flow conduits are much smaller than those commonly en-
countered in many engineering applications and the conduits are
characterized by very large surface area to volume ratios �on the
order of 108 m2/m3�, one wonders whether highly confined liq-
uids behave differently than their macroscopic counterparts. Some
of the relevant questions are: �1� At what length scale does the
continuum approximation break down? �2� Is the nonslip bound-
ary condition applicable at very small scales? How do fluid/solid
molecular interactions affect slip? �3� Are surface phenomena that
are typically ignored in larger conduits important in their small-
size counterparts? �4� How are fluid phase change equilibrium and
dynamics affected by the presence of surfaces and interfaces at
ultrafine length scales? To answer some of these questions, our
research group is conducting fluid flow experiments in conduits
consisting of carbon nanotubes. Carbon nanotubes are a conve-
nient material with which to work for several reasons. First, car-
bon nanotubes can be fabricated with diameters ranging from a
fraction of a nanometer to several hundred nanometers, allowing
one to conduct experiments with various tube sizes. Second, the
tube’s surface properties can be modified with heat and/or chemi-
cal treatments to facilitate behaviors ranging from hydrophilic to
hydrophobic, allowing one to probe the effect of surface proper-
ties on the liquids’ behaviors. Indeed, there is growing experimen-
tal evidence that liquids flowing on hydrophobic surfaces exhibit
slip. See Ref. �1� for a recent review. Third, the tubes’ walls are
sufficiently thin to be transparent to light �2� and electrons �3–6�.
Moreover, the tubes can contain high-pressure fluids for an ex-
tended time even in the vacuum environment of the electron mi-
croscope �3,4�.

One of the obstacles encountered when studying nanoscale phe-
nomena is the limited resolution of visible light. Fortunately,
given the relatively small wavelengths of electrons, scanning
and/or transmission electron microscopy allows one to visualize
phenomena at sub-nanometer length scales. Hence, electron mi-
croscopy holds great promise for the study of liquid behavior at
the nanoscale. Unfortunately, however, conventional electron mi-
croscopy requires vacuum conditions, and, in the past this has
precluded its use for the study of volatile fluids. With present day
technology, at best, one can operate with environmental chambers
that allow the introduction of humid gases. This shortcoming of
electron microscopes can be alleviated by fully encapsulating the
fluids in sufficiently small containers that facilitate electron trans-
mission through them. Indeed, our group has demonstrated the
feasibility of observing and thermally actuating liquids confined in
nanotubes with both transmission and scanning electron micros-
copy �3–7� �see Fig. 1�. To make additional progress and enable
controlled experiments with well-characterized fluids in an elec-

tron microscope, it is necessary to construct nanotube-based de-
vices that allow for the deliberate introduction and removal of
well-characterized liquids in the vacuum environment of the elec-
tron microscope’s chamber. The construction of and preliminary
experiments with such a device, made utilizing hybrid fabrication
technology, are described in this issue �8�. This hybrid technology
utilizes dielectrophoresis, a phenomenon that involves interesting
fluid mechanics all by itself, for the controlled positioning of
nanotubes at predetermined locations, and photolithography and
microfabrication for the construction of functional devices.

Although the use of electron microscopy to study the behavior
of liquids at the nanoscale appears to be promising, there are also
potential hurdles. Through ionization, radiolysis, and heating, the
electron beam may alter the liquid and the tube’s surface proper-
ties �5,6�. Additionally, the electron microscope data may require
sophisticated interpretation. To partially address some of these
issues, we are comparing optical and electron microscope images

Fig. 1 Micrographs showing glycerin „a… and water „b…–„d… in-
side carbon nanotubes. The tubes shown in „a… and „b… were
fabricated with chemical vapor deposition in alumina tem-
plates. The tubes in „c… and „d… were hydrothermally produced.
„a… Optical micrograph of glycerin inside an open CVD-grown
nanotube. „b… Environmental SEM image of water inside a
nanotube similar to the one shown in „a…. „c… TEM image of
water inside a hydrothermally-produced, sealed carbon nano-
tube. „d… TEM micrographs of a fluid inside a multi-wall,
hydorthermally-produced, sealed carbon nanotube.
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of liquid flow in tubes of diameters in the range that allows both
optical and electron imaging �Figs. 1�a� and 1�b�.
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Modeling and Computational Simulation of Viscoelastic Flows
Kathleen Feigl
Michigan Technological University, Houghton, MI
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An important goal in viscoelastic fluid mechanics is to under-
stand the relationship between a flow process, the flow-induced
microstructure of the fluid, and the rheology of the fluid. Achiev-
ing this goal requires theoretical modeling, computational simula-
tions, and experiments. On the modeling side, the development of
accurate stress-strain models for rheologically complex fluids re-
mains a challenge. Advances in this area require the development
and investigation of models which incorporate structural informa-
tion on the fluid. For polymer solutions and melts, this translates
into molecular-based modeling involving, for example, reptation
theory and/or network theory. It is vital to continue these efforts. It
is equally important to investigate other suitable modeling ap-
proaches for these fluids and for emulsions and polymer blends. In
particular, more attention should be given to the GENERIC thermo-
dynamical approach which allows the derivation of a complete set
of evolution equations for a defined set of state variables, includ-

ing structural variables. A second challenge is the development
and implementation of accurate, efficient, stable, and robust nu-
merical algorithms for solving flow problems involving these
models in engineering applications. Micro-macro simulations of
polymeric flow involve the coupling of the conservation equations
from continuum mechanics with a molecular-based rheological
model. While perhaps out of its infancy, this multiscale simulation
approach needs much more development and theoretical analysis.
Efficient numerical algorithms are also needed for solving the
very large, coupled, nonlinear systems of equations which the
GENERIC modeling approach typically produces in inhomogeneous
flows. Furthermore, it is important to increase the use of these
simulations as a model validation tool, including the comparison
of simulation results, e.g., velocity and stress fields, with experi-
mental data.

Research in Rimming Flows
Sergei Fomin
California State University, Chico
e-mail: sfomin@csuchico.edu

The problem of rotational flow on the inner wall �rimming
flow� and on the outer wall �coating flow� of a hollow horizontal
cylinder is of interest due to its wide range of applications in
industry. Both coating and rimming flows are shaped by the same
forces, exhibit similar hydrodynamic effects, and are described by
the same governing equations. In both configurations flow exhib-
its a surprisingly rich variety of phenomena, including various
instabilities and pattern formations. Due to the complexity of the
problem previous investigations were focused only on the analysis
of the isothermal flows of Newtonian fluids with constant physical
properties. However, real polymeric solutes used in rotational
molding and coating technology are chemically very complex
strongly nonlinear substances and, therefore, are non-Newtonian
�shear-thinning and shear-thickening, viscoplastic and viscoelas-
tic� and heterogeneous �multi-component� reactive fluids. Ther-
mophysical properties of these fluids are strongly temperature-

dependent. To the best of our knowledge, the impact of important
factors such as chemical reactions and temperature variation on
the flow regime has not been discussed in the literature related to
rimming flows.

Elimination of instabilities and determination of a criterion for
flow stability of reacting nonlinear polymeric solute to obtain a
continuous and smooth coating film on the wall of the cylinder are
of major concern for the engineer-practitioner. Therefore, there is
a need in the near future for attention to be focused on the fol-
lowing issues: �i� assessment of the effect of the nonlinear prop-
erties of the liquid polymer on the flow regime and flow instabili-
ties; �ii� derivation of the stability criteria for non-Newtonian
fluids; �iii� analysis of the effect of chemical reactions, tempera-
ture, and concentration variations in the solute on the stability of
the rimming flow.
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A Puzzling Pattern in Taylor-Couette Flow
Keizo Watanabe
Tokyo Metropolitan University and Tokyo University of Agriculture and Technology, Tokyo, Japan
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The flow pattern for a Newtonian fluid between two coaxial
cylinders changes to Taylor-Couette flow from rotational Couette
flow with increasing rotational speed of the inner cylinder. This
flow field is ideal for research into the transition process from
laminar to turbulent flow because it is slower than other flow
systems and the instabilities are well understood. Thus, much the-
oretical and experimental research on the transition process using
this flow field has been carried out for Newtonian fluids since
Taylor’s work. However, there are comparatively few studies on
the flow of non-Newtonian fluids.

Flow visualization results for polymer solutions show that
Görtler vortices of half the number of Taylor cells occur in the gap
between coaxial cylinders when Taylor vortex flow in the primary
mode is formed �1�. However, for 50 and 100 ppm surfactant

solutions Taylor vortices are not apparent and Görtler vortices
collapse. Thus, the following questions naturally arise: Why is it
that surfactant solutions do not form Taylor cells in the stale
Taylor-Couette flow, whereas dilute polymer solutions do so, even
though both are viscoelastic? What is the crucial difference be-
tween polymeric and surfactant solutions in constitutive formula-
tion and physical properties to result in this behavior? What are
the consequences concerning the Weissenberg assumption for the
shear flow of surfactant solutions?
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Conformal �or freeform� and steep concave optics are important
classes of optics that are difficult to finish using conventional
techniques due to mechanical interferences and steep local slopes.
It has been demonstrated that impingement of a magnetically sta-
bilized, collimated jet of MR fluid provides an ideal tool for fin-
ishing such challenging shapes. Existing theoretical work is fo-
cused on the modeling of the flow in the impingement zone. In

numerous experiments with different process parameters �jet ve-
locities, nozzle diameters, and fluid viscosity� it was shown that
material removal in the polishing spot closely correlates with the
computed rate of work done at the surface by the fluid. Future
optimization of the technology requires theoretical considerations
to model the mechanism of jet stabilization.
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Controlled Nanoassembly and
Construction of Nanofluidic
Devices
This paper describes the combined use of controlled nanoassembly and microfabrication
(photolithography) to construct multi-walled, carbon, nanotube-based fluidic devices.
The nanoassembly technique utilizes dielectrophoresis to position individual nanotubes
across the gap between two electrodes patterned on a wafer. The dielectrophoretic mi-
gration process was studied theoretically and experimentally. Once a tube had been
trapped between a pair of electrodes, photoresist was spun over the wafer and developed
to form microfluidic interfaces. Liquid condensation in and evaporation from the nano-
tubes were observed with optical microscopy. The nanotube-based fluidic devices can be
used for studies of fluid transport under extreme confinement and as sensitive
sensors. �DOI: 10.1115/1.2136932�

1 Introduction
Recent advances in the synthesis of nanotubes offer opportuni-

ties for fundamental studies of transport and interactions in highly
confined systems and for the development of novel, sensitive de-
vices and measurement techniques �1–3�. Due to their small size,
nanotubes are difficult to manipulate. Dielectrophoresis provides a
convenient and attractive means for positioning the nanotubes at
predetermined locations.

The term dielectrophoresis was coined by Pohl �4�, and it de-
scribes the migration of suspended particles in a nonuniform elec-
tric field. The particles need not be charged. Briefly �5�, the non-
uniform electric field polarizes the particles and induces a dipole
moment. Since the dipole’s poles are subjected to different electric
field intensities, a net force results that stretches the particle and
causes it to migrate in the electric field. In addition to translational
forces, the particle is subjected to torque that typically tends to
align it with the electric field. Dielectrophoresis allows one to
apply noncontact forces to suspended particles. The phenomenon
should not be confused with electrophoresis, which pertains to the
motion of charged particles in an �not necessarily nonuniform�
electric field. While dielectrophoresis occurs in both ac and dc
electric fields, ac fields are often preferred to minimize the ad-
verse effects of the electrodes’ electrochemistry, to suppress mi-
gration due to the particle’s charge, and to affect the particle’s
dielectric properties �through their dependence on electric field
frequency�. Depending on the dielectric properties of the particle
and the suspending medium, the dielectric force may be directed
either towards the location of maximum electric field intensity
�positive dielectrophoresis� or away from the maximum field in-
tensity �negative dielectrophoresis�.

The dielectrophoretic forces are quite small, and traditionally
they have been used to manipulate particles with characteristic
lengths on the order of a few micrometers such as cells. Micro-
fabrication technology allows one, however, to fabricate elec-
trodes with very small gaps between them. The very high electric
fields produced—on the order of 107 V/m—allow one to manipu-
late nanotubes and large macromolecules such as DNA, actin fila-
ments, and microtubules.

Various groups have demonstrated the use of dielectrophoresis
to position single-wall nanotubes, nanowires, DNA, and microtu-

bules across the gap between adjacent electrodes. Yamamoto et al.
�6� demonstrated that when ac field was applied to an isopropyl
alcohol suspension of multi-walled nanotubes placed on top of
electrodes patterned on a glass substrate, the multi-walled tubes
accumulated on the electrodes’ surfaces. More recently, Chung et
al. �7� applied a similar technique and described the need for the
combined use of dc and ac electric fields to successfully trap
multi-walled nanotubes across the gap between two electrodes. In
the presence of an ac field alone, successful trapping was not
achieved �7�. In contrast, in our work, we employed solely ac
fields to trap single nanotubes across the gap between electrodes
with good reproducible results.

The nanotubes’ migration was visualized directly with optical
microscopy and modeled theoretically. When the solution was di-
lute and the electric field was applied for a relatively short amount
of time, single tubes were assembled across the gap between ad-
jacent electrodes. When the solution was less dilute or the electric
field was applied for an extended period of time, we observed the
formation of chains of nanotubes. Once a tube had been posi-
tioned in a desired location, we were able to use photolithographic
techniques to construct fluidic interconnects and fabricate a
nanotube-based fluidic device.

The nanotubes used in our study were synthesized by chemical
vapor deposition of carbon in pores etched in alumina membranes
�8�. These carbon nanotubes had sufficiently thin walls to allow
direct observations with optical microscopy of liquid motion
through the tubes. The tubes filled readily when brought into con-
tact with a liquid drop. We also observed condensation and evapo-
ration inside the tube. Consistent with Rossi et al. �9�, who studied
with an environmental scanning microscope condensation and
evaporation in the same type of tubes, we found that the alumina-
grown tubes were hydrophilic.

The paper is organized as follows. In Sec. 2, we describe the
unique fabrication process that combines dielectrophoretic posi-
tioning of individual nanotubes and photolithography. Section 3
provides experimental observations of the nanotube dielectro-
phoretic migration process and the fascinating phenomenon of
chain formation. In Sec. 4, we carry out a few theoretical calcu-
lations of particle migration and compare the theoretical predic-
tions with experimental observations. Section 5 concludes.

2 Nanoassembly and Construction of a Nanotube-
Based Device

Gold electrodes with a NiCr adhesion layer were patterned on
SiO2-coated silicon wafers and on glass microscope slides. The

1All correspondence should be directed to this author.
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glass slides had the advantage of allowing us to carry out obser-
vations from both sides of the device. Various electrode configu-
rations were fabricated and tested with respect to their dielectro-
phoretic trapping effectiveness. Figure 1 depicts an image of one
electrode layout. Six gold electrodes were patterned using stan-
dard photolithographic techniques and the liftoff process. The
circled pair of electrodes in Fig. 1 was used for nanotube trapping.
The gap between the trapping electrodes was 8 �m. The other
electrodes were deposited for driving and sensing the flow
through the tube. The sensing and driving electrodes are not dis-
cussed in this paper. Figure 2 depicts schematically yet another
electrode configuration with the relevant dimensions that were
used in many of our experiments. For additional information on
the various electrode configurations that we tested and their rela-
tive advantages and disadvantages, see �2�.

The carbon nanotubes that we used in our experiments were
synthesized by chemical vapor deposition of carbon in a commer-
cially available alumina membrane template with pore diameters
of �250 nm. Subsequent to the deposition process, the nanotubes
were released by dissolving the alumina in a 1 M NaOH solution
�8�. These particular tubes were selected because they are typi-
cally open ended, straight, relatively smooth, and possess uniform
bore geometry �outer diameter of approximately 250 nm, wall
thickness of 15 nm, and lengths of up to 50 �m�. Because of their
thin wall thickness, the tubes are transparent in a scanning elec-
tron microscope �SEM� as well as to visible wavelengths. SEM
and transmission electron microscope �TEM� images of these
tubes are available in �9�. The fabrication technique that we de-
scribe below can be applied to any type of nanotubes.

The tubes were suspended in an isopropanol solution to a con-
centration of approximately 0.1 mg/mL and sonicated to break
aggregates and separate the tubes. Unfortunately, the tubes were
quite fragile and tended to disintegrate during prolonged sonica-

tion. Repeated experiments suggested that five repetitions of 5 s
sonication followed with 1 min of manual shaking yielded useful
tubes with an average length of about 10 �m.

A drop of approximately 20 �L isopropanol solution laden with
nanotubes was placed with a pipette on top of the trapping elec-
trodes. A function generator �Tektronix CF6250� was connected to
the electrodes’ pads with micromanipulators �Micromanipulator
Inc., model 110�. A potential difference of 12 V peak to peak at
2 MHz frequency was applied across the electrodes. Concurrently,
the electrical signal was viewed with an oscilloscope. The experi-
ments were carried out on a microscope stage �Olympus BX-51�,
and the tube migration was viewed with 400�magnification. The
nanotube migration was photographed with a CCD camera �Nikon
coolpix 995� mounted on the microscope. The experiment was
terminated upon nanotube capture. Typically, the nanotube solu-
tion was exposed to the electric field for about 30 s. No significant
change in the voltage signal was detected upon trapping nor did
the electrodes shorten. This is perhaps due to the relatively high
contact resistance between the trapped nanotube and the elec-
trodes. Once a nanotube had been captured, the power supply was
turned off and the isopropanol drop was left to dry. The drop
evaporated within about 2 min.

Figure 3 is a SEM image of a nanotube trapped between two
electrodes. Witness that a single nanotube is resting across the gap
between the electrodes. The nanotube is nearly perpendicular to
the electrodes’ edges, and both ends of the tube are resting on the
opposite electrodes with a significant overlap between the tube
and the electrodes.

Subsequently, the chip was cleaned. The chip with the captured
nanotube was washed with buffered HF solution for 20 s to re-
move the thin oxide layer. This was followed by a 1 min rinse in
deionized �DI� water. The chip was then sprayed with acetone
followed by IPA to further clean the surface, and then washed
again with DI water for 1 min. The wafers were then spun dry and
baked on a hot plate for 5 min at 200°C to remove any residual
moisture. The adhesion forces between the nanotubes and the gold
electrodes were sufficiently strong to leave most of the nanotubes
intact during the washing process. The presence of the nanotube
was confirmed with visual observation through a microscope.

Once the chip was cooled to room temperature, it was mounted
on a spinner and a drop of SU-8 �Microchem 2050� negative
photoresist was placed on the chip. The chip with the drop was
spun at 500 rpm for 5 s and at 3000 rpm for 30 s. The wafer was
soft baked for 4 min at 65°C. Subsequently, the temperature was
ramped to 100°C, and the wafer was held at 100°C for 9 min. The
wafer was then cooled to room temperature.

The lithographic mask was aligned with the SU-8 coated wafer
and exposed to a 375 W, 365 nm UV light source. The wafer was
postexposure baked using a protocol similar to the one used for
the soft bake. The wafer was then allowed to cool to room tem-
perature. Next, the pattern was developed by immersing the wafer

Fig. 1 Top view of a nanotube-based fluidic device. The trap-
ping electrodes are enclosed with a dashed circle. The gap be-
tween the trapping electrodes is 8 �m. The image was taken
with an optical microscope. The photographs also show elec-
trodes for the induction of electrophoretic flow and for the mea-
surement of ionic currents.

Fig. 2 A schematic depiction of another layout of trapping
electrodes. The dimensions of the electrodes are shown in the
figure.

Fig. 3 A SEM image of a trapped nanotube. The gap between
the electrodes is 8 �m.
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in SU-8 developer �Microchem� for 6 min under manual agitation.
The patterned SU-8 was then sprayed with IPA and spun dry.

Figure 4 depicts schematically the cross-section of the device
obtained at the conclusion of the process. The device consists of
two wells separated with a thin layer of SU-8 and interconnected
with a nanotube. Figure 5 is a SEM image of the same nanofluidic
device �top view�. The insert �top left� is a magnified view of the
region next to the SU-8 barrier that separates the two wells. Ob-
serve the end of the nanotube that emerges from under the barrier.

An important question is whether the nanotube can be filled
with liquid. To answer this question, we submerged nanotubes in
drops of various liquids such as water and ethylene glycol. The
liquid drops were then evaporated with a stream of dry air. The
nanotube was observed with an inverted microscope �Olympus
IX71�. The presence of liquid inside the nanotube was evidenced
by the dark appearance of the nanotube. The liquid vapor interface
was clearly visible. We also were able to observe the evaporation
of the liquid from the tube’s interior. Figure 6 provides a sequence
of images depicting the receding meniscus �liquid-air interface� in
a nanotube filled with ethylene glycol. In some cases, the menis-
cus receded on both sides of the liquid slug. In other cases such as
the one in Fig. 6, the meniscus receded only on one side of the
liquid slug. We speculate that the tube was slightly tapered. As
liquid evaporated at the lower end of the tube, capillary forces
drew the slug towards that end and assured that as long as liquid
was present in the tube, the lower end of the tube was filled with
liquid. The observations depicted in Fig. 6 were repeated numer-

ous times with excellent reproducibility. For quantitative measure-
ments of the tube filling by capillary forces and by condensation
and the evaporation of a liquid slug confined in the tube, see �10�.
Our experimental observations are consistent with the observa-
tions of Rossi et al. �9� in an environmental scanning electron
microscope. It is speculated that the tubes are hydrophilic because
the synthesis of the tubes in the hydrocarbon environment causes
the graphene sheets to be hydrogen terminated.

The devices depicted in Figs. 4 and 5 allow us to carry out
controlled experiments involving flow through nanotubes driven
by various forces such as capillary action, pressure, and electroos-
mosis. These experiments, however, will not be described in this
paper. If desired, the device also can be capped to form closed
wells.

3 Experimental Observations of the Nanoassembly
Process

The migration of the nanotubes during the trapping experiments
was captured with a video camera. Our experimental setup al-
lowed us to obtain only the top view of the particle’s trajectory.
Figures 7�a�–7�c� depict, respectively, the positions of the nano-
tube at times 0, 0.2, and 0.28 s during the trapping process. For
better visibility, the tracked nanotube was encircled with an el-
lipse.

Observations indicate that when the particle was far from the
trap, it moved at nearly level height with nearly uniform speed
towards the gap, while rotating to align itself with the electric
field. Once arriving in close vicinity of the gap, the particle’s
trajectory underwent an abrupt turn, and the particle accelerated
towards the gap.

Figure 8 depicts the horizontal velocity and horizontal projec-
tion of the nanotube’s inclination angle as functions of its hori-
zontal distance from the gap’s center during the migration process.
The horizontal distance is defined as the projection of the distance
between the center of the tube and the center of the gap on a line
parallel to the electrodes’ long edge. The inclination angle is de-
fined in Fig. 7�c�. When the nanotube was about 100 �m horizon-
tal distance from the gap’s center, its velocity was about
200 �m/s. This velocity stayed nearly constant until the nanotube
arrived at the gap’s location. When the nanotube was about
10 �m away from the gap’s center, its velocity started to increase
rapidly. Because of the low frame speed of our camera, we were
not able to obtain data for distances shorter than 10 �m. The data
point at x=10 �m is an underestimate of the actual velocity since
the actual moment of the tube’s landing occurred between succes-
sive frames. Witness that as the nanotube migrated towards the
gap, the dielectrophoretic torque aligned the tube with the electric
field lines. In a later section, we will compare the observations of
Fig. 8 with theoretical predictions.

In most cases, we were careful to carry out the experiment for
a relatively short amount of time to avoid the trapping of multiple
nanotubes. In some experiments, however, we left the electric
field active for prolonged times to observe the interesting phe-
nomenon of chain formation. In the presence of an electric field,
the nanotubes get polarized and tend to attract each other and
form aggregates. Additionally, tubes that were attracted to and
trapped at the edges of the electrodes served as nanoelectrodes
and attracted additional nanotubes. Although the chain formation
and nanotube aggregation were undesired in our particular appli-
cation, we found the phenomenon to be sufficiently fascinating to
warrant brief description.

Figures 9 and 10 show, respectively, SEM images of early and
advanced stages of the chain formation process. In Fig. 9, a few
nanotubes were trapped at the high electric field intensity at the
edge of the electrode. These tubes got polarized and served as
nanoelectrodes that attracted additional nanotubes. When this pro-
cess was allowed to continue over an extended time-period, fractal
patterns resembling trees formed �Fig. 10�. Since the dielectro-
phoretic force is proportional to the particle’s volume, larger par-

Fig. 4 A schematic depiction of a cross section of the nano-
fluidic device

Fig. 5 A SEM image of the nanofluidic device „top view…. The
insert „top left… is a magnified view of the region next to the
barrier between the two wells, showing the end of the nanotube
under the barrier.

Fig. 6 Various stages of evaporation of ethylene glycol from
the interior of a nanotube. The tube on the left is nearly full; the
nanotube on the right is nearly empty.
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ticles or nanotube aggregates arrived first at the electrode’s edge
to form “tree” trunks. As the trees developed, the size of the
branches typically decreased. In some cases �Fig. 10, left�, nano-
tubes were aligned back to back to form long, continuous com-
posite tubes.

4 Dielectrophoretic Trapping—Theoretical Consider-
ations

In this section, we provide an approximate model to describe
the nanotubes’ migration towards the electrodes in the presence of
the electric field. The model is depicted schematically in Fig. 11.
The domain consists of a semi-infinite medium of perfectly di-
electric, isotropic liquid of relative dielectric permittivity �m. The
liquid is bounded from below by a flat substrate. Two electrodes
having a gap of length G between them are patterned on the sub-
strate. The right and left electrodes are maintained, respectively, at
uniform, constant potentials �V and −�V. The electrodes induce
an electric field E in the liquid. We adopt the convention that bold
letters represent vectors. The Cartesian coordinates x and y are
aligned, respectively, parallel and normal to the substrate. The
origin of the coordinate system is located at the gap’s center.

We will assume a two-dimensional electric field. We justify this
approximation by the fact that the electrodes are wide �into the
plane of the figure� compared to the gap’s length and the particle’s
size and that we will be focusing mostly on particle migration at
relatively small heights and close to the electrodes’ mid-width.
The use of a semi-infinite medium is justified on the ground that

Fig. 7 Images of the nanotube during various stages of the
trapping process: 0 s „a…, 0.2 s „b…, and 0.28 s „c…. The nano-
tube is encircled with an ellipse for better visibility.

Fig. 8 The nanotube’s velocity and inclination angle as functions of the
horizontal distance from the tube’s center to the gap’s center. The inclina-
tion angle is defined in Fig. 7„c….

Fig. 9 Early stages of the nanotube chain formation process
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the radius of the liquid drop positioned over the electrodes is two
to three orders of magnitude larger than the gap’s length.

To obtain an approximate expression for the electric field, it is
convenient to use elliptic coordinates. The transformation between
the Cartesian and elliptic coordinates is �11�

� + i� = cosh−1� 2

G
�x + iy�� , �1�

where the � curves are confocal ellipses and the � curves are
hyperbolas, all with foci at x= ±G /2. In the elliptic coordinate
system, the potential is represented with the relatively simple ex-
pression:

� = �V�1 −
2

�
�� , �2�

where �=cos−1��	�x+G /2�2+y2−	�x−G /2�2+y2� /G
. Constant
potential contour lines are depicted in Fig. 12. The gap’s dimen-
sions in Fig. 12 are consistent with our experimental setup. Wit-
ness that the electrodes’ surfaces form constant potential lines and
that the potential contours are perpendicular to the insulated gap
between the electrodes. The electric field is E0=−��. The sub-
script zero indicates that this is the electric field in the absence of
the particle. The electric field can be readily calculated from ex-

pression �2�. Since the corresponding formulas for the electric
field components are somewhat lengthy, we do not reproduce
them here.

Figure 13 depicts contours of the electric field intensity �E0�.
Not surprisingly, the maximum field intensity occurs at the edges
of the electrodes. In fact, the electric field is singular at the elec-
trodes’ edges. This singularity will not present a problem here
since we will focus our attention on events occurring not too close
to the electrodes’ edges. The theory that we use below is not
applicable in very close proximity to the electrodes’ edges.

It is instructive to depict the electric field intensity as a function
of x at various elevations above the electrodes’ surface. Figure 14
depicts �E0� as a function of x at y=0.2, 2, 4, and 10 �m. As y
increases, the field intensity decreases. Witness that immediately
above the electrodes’ surface, there are two peaks at the edges of
the electrodes �y	10 �m�. As y increases, the two peaks eventu-
ally merge into a single peak located above the center of the gap
�x=0�.

Next, we will evaluate the forces that act on the nanotube when
it is suspended in a perfectly dielectric fluid and subjected to the
electric field depicted in Figs. 13 and 14. We focus on a cylindri-
cal particle of length 2a1, radius a2, and volume Vp, having an
isotropic dielectric constant �p and an electric conductivity 
. The
complex dielectric constant of the tube is �5� �p

* =�p+
 / �j��,
where � is the frequency of the electric field and j=	−1. We
estimated 
�1.6�104 S/m from electric conductivity measure-
ments �2�. Since the electric conductivity of the tube material is
much higher than the electric conductivity of the suspending fluid
�isopropanol�, positive dielectrophoresis of the carbon nanotubes
is expected and, indeed, observed. The nanotube’s center is lo-
cated at �xp ,yp
 and the nanotube’s axis forms angle � with the x
axis. We assume that the nanotube is not charged. This assumption

Fig. 10 A nanotube forest

Fig. 11 A schematic description of the model used to calculate
the dielectrophoretic and viscous forces acting on the particle
and to predict the particle’s trajectory

Fig. 12 The electric potential „contour lines… in the gap’s
vicinity

Fig. 13 Contours of electric field intensity �E0�

Fig. 14 The electric field intensity �E0� as a function of x at y
=0.2 „solid line…, 2 „dashed line…, 4 „dashed-dot line…, and 10 �m
„dotted line…
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of electric neutrality is not critical since, in the experiments, we
used ac fields and any migration due to the tube’s charge will be
nearly nullified.

The electric field E polarizes the nanotube and induces a dipole
moment P in the tube. Roughly, the tube can be imagined as
acquiring an electric charge at one end and an opposite sign
charge of equal magnitude at the other end. The interaction of the
induced charges with the electric field E results in electrostatic
forces. When the particle is small compared to the length scale of
the nonuniformities associated with the externally imposed elec-
tric field, the force �F� and torque �T� acting on the tube may be
approximated as �5�

F = �P • ��E0 �3�
and

T = P � E0. �4�

In the above, E0 is the electric field at the location of the particle’s
center in the particle’s absence. When an ac field is applied, E0
represents the rms of the field. Equations �3� and �4� are known as
the dipole moment approximation. For the range of validity of this
approximation, see �12�.

The effective dipole moment is:

P � �0�mVpRe�fCM�E0, �5�

where �0 is the dielectric constant of free space; Vp is the parti-
cle’s volume; and Re�fCM� is the real part of the Clausius-
Mossotti factor. fCM depends on the particle’s geometry and di-
electric properties.

When the particle is an ellipsoid with semi-axes a1, a2, and a3,
the Clausius-Mossotti factor in the direction of the ai axis is �13�

fCM,i =
�p

* − �m
*

�m
* + ��p

* − �m
* �Li

, �6�

where Li=a1a2a3 /20
�ds / ��s+ai

2�Rs�0 is the depolarization fac-
tor, Vp=4�a1a2a3 /3 is the ellipsoid’s volume, and Rs

=	�s+a1
2��s+a2

2��s+a3
2�. In the above, we use the superscript �*�

to indicate that, in general, the dielectric constants may be com-
plex quantities. When a1=a2=a3, we obtain the well-known result
for the spherical particle with Li=1/3.

When the particle is a prolate ellipsoid �a1�a2=a3�, the depo-
larization factors L1 and L2 can be calculated in closed forms:

L1 = S2� 1

S2 − 1
−

Sec−1�S�
�S2 − 1�3/2� �7�

and

L2 =
1

2
� 1

�1 − S2�
+

S2

�S2 − 1�3/2��

2
− Csc−1�S��� , �8�

where S=a2 /a1 is the slenderness factor. When S�1, Eqs. �7� and
�8� can be further simplified with the aid of Taylor series expan-
sions:

L1 � S2�ln�2

S
� − 1� + O�S4� �9�

and

L2 �
1

2
+

1

2
�1 − ln 2 + ln S�S2 + O�S4� . �10�

When �p�m, the particles will be attracted to the regions of
maximum field intensity �positive dielectrophoresis�. When �p
	�m, the particles will be attracted to the regions of minimum
field intensity �negative dielectrophoresis�. In our case, the nano-
tube’s effective permittivity is significantly larger than that of the
surrounding medium because the tube’s conductivity is signifi-
cantly higher than that of the liquid. We therefore expect migra-
tion toward the location of maximum field intensity.

The migration of the nanotubes is mitigated by viscous drag.
Unfortunately, exact expressions for the drag acting on a cylinder
translating next to a plane surface are not available. Instead, we
will use the slender body approximation for a cylindrical object
translating at a distance H from and parallel to a plane in the
Stokes flow regime. Due to the very small size of the nanotubes,
we are justified in assuming creeping flow. The drag coefficients
Dx and Dy �14,15� in the x and y directions are, respectively,

Dx =
Fx

2��Uxa1
= − 2� − �2�− 0.614 + WI� + O��3,

�2a2

H
�

�11�

and

Dy =
Fy

2��Uya1
= − 4� − 2�2�− 1.386 + WII� + O��3,

�2a2

H
� .

�12�

In the above, Fx and Fy are, respectively, the viscous forces in the
x and y directions. Ux and Uy are the velocity components in the
x and y directions. � is the fluid’s viscosity. �= �ln�2/S��−1,

WI = 2 sinh−1�a1/H� − 3	1 +
H2

a1
2 +

7H

2a1
−

H2

2a1
2	1 + H2/a1

2

and

WII = 2 sinh−1�a1/H� +
1

	1 + H2/a1
2

.

By equating the viscous and electrostatic forces, we obtain the
velocity components of the nanotube. Figures 15 and 16 depict the
horizontal and vertical velocities of a cylindrical particle as func-
tions of the x coordinate. Figure 15�a� depicts the horizontal ve-
locity when H=1 �solid line� and 2 �m �dashed line�. Figures
15�b� and 16 depict, respectively, the horizontal and vertical ve-
locities when H=4 �solid line�, 6 �dashed line�, and 10 �m �dot-
ted line�. The velocities are expressed in mm/s and the distances
in �m. The inserts in the figure provide a magnified view of the
velocity distribution some distance from the gap. Since general
expressions for drag forces of a tube as a function of the inclina-
tion angle are not available, we focus only on tubes that are par-
allel to the surface. In our calculations, the nanotube has half-
length a1=6 �m and radius a2=125 nm. The medium has a
relative permittivity of 20 and a viscosity of 2�10−3 kg/m-s.

The theory predicts that when the tube is relatively far from the
gap, both the horizontal and vertical velocities are relatively
small—on the order of a fraction of mm per second �Fig. 15�. As
the tube approaches the gap, its velocity increases rapidly and
attains a maximum in the vicinity of the electrodes’ edges. The
maximum velocity is on the order of centimeters per second.
These predictions are in qualitative agreement with our experi-
mental observations �Fig. 8�.

When the tube is close to the surface �Fig. 15�a��, the tube
senses the presence of the two electric field maxima at the elec-
trodes’ edges and the horizontal velocity is directed towards the
electrodes’ edges. In other words, the velocity is positive on the
left-hand side of the edge and negative on the right-hand side.
When the tube is sufficiently far from the gap �Fig. 15�b��, the
horizontal velocity is directed towards the center of the gap. Due
to symmetry, the horizontal velocity vanishes at the gap’s center
�x=0�. These observations are consistent with Fig. 14 which de-
picts the presence of two peaks in the electric field in the elec-
trode’s vicinity and the merging of these two peaks into a single
peak some distance above the electrodes’ surface. In other words,
a particle cruising well above the surface will be attracted �hori-
zontally� to x=0. Particles close to the surface will be attracted to
the electrodes’ edges.
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The vertical velocity �Fig. 16� exhibits somewhat similar trends
to the ones depicted in Fig. 15. Unexpectedly, at relatively large x
values, the vertical velocity is directed upwards. The magnitude of
this vertical velocity is very small, and the tube would appear to
be cruising at a nearly constant elevation. Indeed, in the experi-

ments, we observed that tubes migrated at nearly level height
when approaching the gap. To verify that this positive velocity is
not an artifact of the dipole moment approximation, we carried
out finite element simulations to calculate the forces acting on the
tube. The numerical simulation results were consistent with the
above predictions.

Recall that the dipole moment approximation is valid only
when the length scale associated with the electric field is large
compared to the particle’s size. This is no longer true when the
particle is close to the gap. To obtain more accurate estimates of
the forces acting in the gap’s vicinity, one would need to calculate
the electric field �E� in the presence of the particle and obtain the
forces by integrating the surface force density,

f = �0�m�E�E • n̂� −
1

2
�E • E�n̂� , �13�

around the particle’s surface. In the above, n̂ is the outer unit
vector normal to the particle’s surface. This type of calculation as
well as accurate estimates of the viscous drag for a particle trans-
lating close to a wall would require, however, the use of numerical
simulations which we do not address in this paper. Liu and Bau
�12� compared the forces predicted using the dipole moment ap-
proximation with predictions based on the Maxwell stress tensor
�Eq. �13�� for the cases of spherical and cylindrical �two-
dimensional� particles. They found that when a spherical particle

Fig. 15 The horizontal velocity Ux as a function of x at „a… y=1 „solid line…
and 2 �m „dashed line… and „b… y=4 „solid line…, 6 „dashed line…, and 10 �m
„dotted line… is depicted as a function of x. The insert depicts a magnified
view of the velocity far from the gap.

Fig. 16 The vertical velocity Uy at y=4 „solid line…, 6 „dashed
line…, and 10 �m „dotted line… is depicted as a function of x. The
insert depicts a magnified view of the velocity far from the gap.
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is located at a distance larger than three radii from the electrode’s
edge, the predictions of the dipole moment approximation were in
good agreement with the predictions of the exact theory. Unfortu-
nately, similar results are not available for the case studied here.
Nevertheless, the good qualitative agreement between the theoret-
ical predictions and the experimental observations suggests that
the dipole moment based theory is capable of providing an ad-
equate qualitative description of the tube’s migration.

We do expect quantitative differences between theory and ex-
periment. The experimental velocity and rotation measurements
are based on a two-dimensional top view of the tube. We were
unable to experimentally determine the velocity in the vertical
direction. Moreover, in the experiments, there may have been flow
in the drop that assisted in bringing tubes to the trap’s vicinity.
The circulation in the drop might have resulted from polarization
effects along the drop’s surfaces, from Marangoni convection re-
sulting from thermal and electric field effects, and from drop
evaporation. All these factors were not accounted for in the simple
theory that we presented here.

5 Conclusions
The paper describes the positioning of carbon nanotubes at pre-

determined locations with the use of dielectric forces. The migra-
tions of the carbon nanotubes in the electric field were observed
and their velocities were estimated with a simple mathematical
model. Dielectrophoresis is a versatile and convenient tool for the
manipulation and assembly of nanoparticles, and we have ex-
tended its use to the positioning and manipulation of individual
macromolecules �not reported here�.

The paper also describes a new, practical means of constructing
nanotube-based fluidic devices. The fabrication technique com-
bines dielectrophoretic trapping with photolithography. Once the
nanotube has been positioned at a predetermined position, one can
bring to bear the tools of photolithography to fabricate fluidic
conduits that will allow one to transmit various fluids, macromol-
ecules, and nanoparticles through the tube. Such devices can be
used for fundamental studies of the behavior of simple and com-
plex fluids under extreme confinement. Moreover, these devices
can be used as highly sensitive biological and chemical sensors.
The fabrication technique can be readily scaled down to allow one
to trap single-walled nanotubes. Moreover, the process is consis-
tent with mass production. Numerous devices can be fabricated in
parallel.

Consistent with other researchers, we have demonstrated that
the nanotubes readily fill with various liquids and that the tubes’

thin walls allow direct observation of a liquid’s presence with the
use of optical microscopy. The motion of the liquid/vapor inter-
face during the evaporation of the liquid inside the tube was
clearly visible.

Acknowledgment
The research was supported by the NSF NIRT Grant No. CTS

0210579, the Pennsylvania State Nano Technology Institute
�NTI�, and DARPA SIMBIOSYS Program No. N66001-01-C-
8056. M. Riegelman also acknowledges support from a GAANN
fellowship. We are grateful to Professor Evoy for introducing us
to the dielectrophoretic nanoassembly technique.

References
�1� Riegelman, M., Liu, H., Evoy, S., and Bau, H. H., 2004, “Nanofabrication of

Carbon Nanotube �CNT� Based Fluidic Device,” Proceedings of NATO-ASI
Nanoengineered Nanofibrous Materials, S. Guceri, V. Kutznetsov, and Y.
Gogotsi, Eds., Kluwer, The Netherlands, pp. 407–414.

�2� Riegelman, M., 2004, “Dielectrophoretic Assembly and Integration of Nano-
fluidic Devices,” M.S. thesis, The University of Pennsylvania.

�3� Evoy, S., DiLello, N., Deshpande, V., Narayanan, A., Liu, H., Riegelman, M.,
Martin, R. R., Hailer, B., Bradley, J. -C., Weiss, W., Mayer, T. S., Gogotsi, Y.,
Bau, H. H., Mallouk, T. E., and Raman, S., 2004, “Dielectrophoretic Assembly
and Integration of Nanowire Devices with Functional CMOS Operating Cir-
cuitry,” Microelectron. Eng., 75�1�, pp. 31–42.

�4� Pohl, H. A., 1978, Dielectrophoresis: The Behavior of Neutral Matter in Non-
uniform Electric Fields, Cambridge University Press, New York.

�5� Jones, T. B., 1995, Electromechanics of Particles, Cambridge University Press,
New York.

�6� Yamamoto, K., Akita, S., and Nakayama, Y., 1998, “Orientation and Purifica-
tion of Carbon Nanotubes Using AC Electrophoresis,” J. Phys. D, 31, pp.
L34–L36.

�7� Chung, J., Lee, K. -H., Lee, J., and Ruoff, R. S., 2004, “Toward Large-Scale
Integration of Carbon Nanotubes,” Langmuir, 20, pp. 3011–3017.

�8� Bradley, J. -C., Babu, S., Ndungu, S., Nikitin, P., and Gogotsi, Y., 2004,
“Nanotube Synthesis Using Alumina Template,” SMIRP Bradley Research
Lab Knowledge Product 10975_0004.

�9� Rossi, M. P., Ye, H., Gogotsi, Y., Babu, S., Ndungu, P., and Bradley, J. -C.,
2004, “Environmental Scanning Electron Microscopy Study of Water in Car-
bon Nanopipes,” Nano Lett., 4�5�, pp. 989–993.

�10� Kim, B. M., Sinha, S., and Bau, H. H., 2004, “Optical Microscope Study of
Liquid Transport in Carbon Nanotubes,” Nano Lett., 4�11�, pp. 2203–2208.

�11� Morse, P. M., and Feshbach, H., 1953, Methods of Theoretical Physics,
McGraw-Hill, New York.

�12� Liu, H., and Bau, H. H., 2004, “Dielectrophoresis of Cylindrical and Spherical
Particles Submerged in Shells and in Semi-Infinite Media,” Phys. Fluids,
16�5�, pp. 1217–1228.

�13� Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill, New York.
�14� Blake, J. R., 1974, “Singularities of Viscous Flow,” J. Eng. Math., 8, pp.

113–124.
�15� De Mestre, N. J., and Russel, W. B., 1975, “Low Reynolds Number Transla-

tion of a Slender Cylinder Near a Plane Wall,” J. Eng. Math., 9, pp. 81–91.

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 13

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Conrad D. James
e-mail: cdjame@sandia.gov

Murat Okandan
e-mail: mokanda@sandia.gov

Paul Galambos
e-mail: pcgalam@sandia.gov

Seethambal S. Mani
e-mail: ssmani@sandia.gov

Sandia National Laboratories,
P.O. Box 5800,

Albuquerque, NM 87185

Dawn Bennett
e-mail: dawnb@umbc.edu
The University of Maryland,

Baltimore County,
1000 Hilltop Circle,

Baltimore, MD 21250

Boris Khusid
e-mail: khusid@adm.njit.edu

New Jersey Institute of Technology,
University Heights,
Newark, NJ 07102

Andreas Acrivos
e-mail: acrivos@scisun.sci.ccny.cuny.edu

The Levich Institute,
The City College of New York,

140th Street & Convent Avenue,
New York, NY 10031

Surface Micromachined
Dielectrophoretic Gates for the
Front-End Device of a
Biodetection System
We present a novel separation device for the front-end of a biodetection system to dis-
criminate between biological and non-biological analytes captured in air samples. By
combining AC dielectrophoresis along the flow streamlines and a field-induced phase-
separation, the device utilizes “dielectrophoretic gating”to separate analytes suspended
in a flowing fluid based on their intrinsic polarizability properties. The gates are inte-
grated into batch fabricated self-sealed surface-micromachined fluid channels. We dem-
onstrate that setting the gate to a moderate voltage in the radio frequency range removed
bacteria cells from a mixture containing non-biological particles without the need for
fluorescent labeling or antibody-antigen hybridization, and also validate experimentally
basic relations for estimating the gate performance. �DOI: 10.1115/1.2136924�

Introduction
There is an increasing demand for novel systems to enable the

rapid detection of biological materials in the field or their continu-
ous monitoring in a hospital setting. The first step in the operation
of such a system consists of concentrating and separating the ana-
lytes of interest from the background matrix and positioning them
into selected locations for analysis. The next step is to provide a
“trigger/cue” that signals the detection of a biological substance.
Many biological detection systems use a trigger/cue based on ul-
traviolet laser-induced fluorescence �UV-LIF�, which can detect
biosignatures specific to living organisms, such as amino acids
and coenzymes �1,2�. UV-LIF and other optical techniques are the
gold standards for biological detection in the laboratory setting,
but they suffer from several drawbacks. For instance, specificity is
a major concern in that contaminants, such as engine exhaust
particles, will also fluoresce under UV excitation, triggering high
rates of false positives �2�. In addition, UV-LIF technology is
difficult to miniaturize, a process that would reduce cost, increase
portability, and facilitate the rapid detection in nonlaboratory set-
tings. Optical systems require fragile components and delicate
alignment of sources, samples, and detectors, making such sys-

tems more difficult to implement in small portable devices where
vibrations and accelerations can compromise detector function.
Gas phase lasers are commonly used as UV sources in such sys-
tems �3�, but these lasers are bulky, draw large amounts of power,
and lack the robustness necessary for typical field applications.
Also, the high initial and lifetime maintenance cost of UV-LIF
laser sources limits overall system affordability. Currently, solid-
state lasers, which are compact, rugged, and use less power, are
now being employed �4� and have been successfully demonstrated
in the field �5�, but specificity and sensitivity problems remain.

For these and other reasons, many researchers are pursuing
nonoptical methods, such as dielectric spectroscopy and imped-
ance monitoring, for biological characterization and detection
�6,7�. The focus of the present work is a related technique, dielec-
trophoretic separation, which is being examined as a detection/
separation method �8–10�. Compared to other available methods,
AC dielectrophoresis �DEP� is particularly well suited for collect-
ing and separating particles because the application of a high-
frequency �megahertz� AC field suppresses undesirable electrode
polarization, electrolytic effects, and electroconvection in the liq-
uid. Also, the polarization forces exerted on analytes are insensi-
tive to the particle charge, a property of analytes that is difficult to
control. A hypothetical front-end of a biological detection system
using “dielectrophoretic gates” �11� is shown in Fig. 1. After an
air sampler collects a sample, the captured analytes are suspended
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in a carrier fluid for transport to the dielectrophoretic gates. The
gates are essentially sources of high-frequency AC voltage that
will impart electrokinetic forces on the flowing analytes. The gate
will separate biological �cellular� from nonbiological analytes us-
ing the frequency dependence of the analytes’ complex dielectric
permittivity, an intrinsic property of all substances. We showed
�11� that, in addition to the dielectrophoretic force imparted by the
gate along the flow streamlines, long-range electrical and hydro-
dynamic forces due to interparticle interactions lead to an accom-
panying phase separation of constituents, thus enhancing separa-
tion. After the cellular material is collected, the contaminants can
be flushed as waste, and the remaining cellular material can be
transported to the detector for identification. Specifically, we dem-
onstrated the dielectrophoretic and field-induced phase separation
of heat-killed bacteria and latex microspheres in a surface micro-
machined fluidic device �11�.

The purpose of this paper is: �i� to describe a technique for the
fabrication of a microchannel equipped with the dielectrophoretic
gate and the experimental setup and procedures for studying the
gate performance not included in Ref. �11� due to page con-
straints, �ii� to present new experimental data on the motion and
separation of biological and nonbiological particles, and �iii� to
validate a simplified method for evaluating the particle velocity
flowing through the gate.

Dielectrophoretic Gate Theory
A new concept for the electroseparation of bioparticles from

nonbiological materials, termed “dielectrophoretic gating,” com-
bines the field-induced DEP along the flow streamlines and phase
transition for manipulating particles in microfluidics �11�. Figure
2�a� depicts the gate, which consists of a pair of microelectrodes
that span a fluid channel, perpendicular to the direction of fluid
flow. When an AC voltage is applied to the microelectrodes, an
electric field is generated within the fluid channel. When exposed
to such a spatially nonuniform electric field, a particle flowing
through the channel will polarize and acquire a dipole moment
that will interact with the electric field, generating a time-averaged
dielectrophoretic force FDEP, given by �12�

FDEP = 3
2�0� fVp Re��*���� � Erms

2 �1�

where �0 and � f are the vacuum and fluid permittivity, respec-
tively, Vp is the particle volume, Re��*���� is the real component
of the relative particle polarization �*��� at the field frequency �,
and �Erms

2 is the gradient of the squared root-mean-square electric
field. Under this force, the particle is either attracted toward

�Re��*��0, positive DEP �pDEP�� or repelled from �Re��*��0,
negative DEP �nDEP�� regions of large �Erms

2 , depending on
whether the particle is more or less polarizable than the liquid,
respectively. We previously demonstrated for pDEP �13,14� and
nDEP �15� that the predictions of a single-particle model, which
considers the combined effect of FDEP, the Stokes drag force, and
the gravity force acting on a single particle are quantitatively con-
sistent with experimental data on the particle motion. These pre-
dictions were made for suspensions with �0.1% �v/v� polarized
particles under the action of strong electric fields, even though
�*��� was measured at low fields �approximately, volts per milli-
meter�. In the radio frequency range, the relative polarizability of
a particle immersed in water is mainly influenced by the ratio of
the capacitances of the particle and of the water, so that a reason-
able estimate of Re��*� is given by

Re��*� �
�p − � f

�p + 2� f
�2�

where �p is the particle permittivity. The dielectric constant of
water at radio frequencies is about 78. In contrast, the dielectric
constants of soil components and common industrial and natural
materials �for example, resins, plastics, carbon black, soot, ash,
and gravel�, when dry, fall in the range 1.5–15. Since the particle
polarization in the radio frequency range is mainly specified by its
bulk dielectric constant, these materials, when dispersed, in water
will exhibit strong negative dielectrophoresis. In contrast, biologi-
cal particles, such as cells, have polarizabilities typically close to
or greater than that of water. Thus, we employ an AC field in the
radio frequency range �0.1–30 MHz� to separate biological from
nonbiological particles in our device. Another essential advantage
of operating in this frequency range is that undesirable electric
effects in water, such as electrolysis and other irreversible chemi-
cal reactions, electroosmosis, and electroconvection are sup-
pressed, making this scheme particularly well suited for microflu-
idic applications. Since electrophoretic effects also vanish at

Fig. 1 Proposed biodetection system that uses dielectro-
phoretic gates as a trigger/cue to signal the detection of an
unknown biological analyte, and to separate biological from
non-biological materials

Fig. 2 „a… Schematic of a dielectrophoretic gate consisting of
two electrodes arranged perpendicular to the fluid flow. „b… Log
plot of the simulated �Erms

2
„x ,z… for the two-electrode dielectro-

phoretic gate. Electrodes „black rectangles… are added for clar-
ity. Dimensions are in �m.
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megahertz frequencies, this separation technique relies on the bulk
polarization properties of a particle, given by Re��*�, that are
insensitive to the particle surface properties which may vary ran-
domly due to environmental effects or intentionally due to the
method of aerosolization.

The range of FDEP operating along the flow streamlines was
extended throughout the height �z-axis� of the channel by placing
an electrode on the top and bottom surfaces of the channel. This
helps to increase the gating efficiency in that particles suspended
in a fluid flowing at any position in the yz plane will be subjected
to FDEP. Figure 2�b� shows a two-dimensional simulation of the
dielectrophoretic gate �CFD-ACE� Version 2003.0.136�. The grid
density was 10 points per micrometer, and the electrodes were set
to 10 V. In this simulation, the height of the channel was 7 �m,
and the electrode surfaces were 2 �m wide. The topography at the
electrode edges was neglected, and all other surfaces were set to
the boundary condition of zero-normal current. The field gradient
is largest at close distances to the microelectrodes, and in this
example, �Erms

2 maintains a value of �1017 V2/m3 or greater
throughout the z-axis near the gate. Upon injecting a solution of
analytes that are more polarizable than the suspending fluid, the
analytes will accelerate under pDEP toward the regions of highest
�Erms

2 , which is near the microelectrodes. Solving the equation of
motion for a particle by taking into account FDEP and the drag
force while neglecting the interparticle interactions and the gravity
force, the velocity of a small spherical particle of radius a travel-
ing in a flowing fluid is given by �13,16�

u = v +
FDEP

6�	a
, �3�

where 	 and v are the fluid viscosity and velocity, respectively.
For large �Erms

2 , FDEP will attract highly polarizable analytes to
the microelectrodes where they will come to rest. In contrast, for
analytes that are less polarizable than the fluid, FDEP will act as a
repulsive force as the analytes seek to migrate toward regions of
low �Erms

2 . Thus, if the particles injected into the channel have
low polarizability, they will be carried with the fluid flow until the
value of �Erms

2 reaches the point at which the particles start being
subjected to nDEP. This nDEP force will then decelerate the par-
ticles, producing a drag force as the particle motion begins to
oppose the fluid motion, and at some location upstream from the
gate, the particles will come to rest at the point where FDEP equals
the drag force. A larger fluid velocity will push the particles closer
to the gate, whereas a smaller fluid velocity will allow the par-
ticles to be repelled at greater distances from the gate. Upon in-
jection of a mixture of low- and high-polarizability particles, the
opposing nDEP and pDEP forces will separate the particles rap-
idly.

After coming to rest, the particles interact with one another due
to their polarization. As the distance between the particles de-
creases, the polarization force increases, greatly exceeding the
magnitude given by the dipole approximation for the interparticle
separation smaller that the particle radius. When the local concen-
tration of the accumulated particles exceeds a threshold value so
that the average interparticle separation becomes sufficiently
small, the polarization forces cause the particles to undergo a
phase transition �referred to as the electrorheological effect �17��
and to form a distinct front between the regions enriched with and
depleted of particles �11�. The evolution of the particle patterns
formation is well described by a proposed electrohydrodynamic
model �11,18�, which does not require any fitting parameters. This
three-dimensional model encompasses the quasi-steady electrody-
namic equations coupled with the momentum and continuity bal-
ance equations of the “mixture” model for a suspension. Now we
shall demonstrate that the simulation of the electric field configu-
ration and Eqs. �1� and �3� provides a simplified method for esti-
mating the particle velocity and the front location, which are
needed for the design and optimization of the gate performance.

Device Fabrication
The devices were fabricated at the Sandia National Laboratories

Microelectronics Development Laboratory. The dielectrophoretic
gate we present here was fabricated using a previously described
process termed SwIFT™ �surface micromachining with integrated
fluidic technology� �19�. SwIFT is a sacrificial layer method that
uses multiple layers of structural materials �polysilicon and silicon
nitride� and sacrificial materials �silicon oxide� to build devices.
The SwIFT process begins with a 6 in. bare �100� n-type wafer
with 2–20 
 cm resistivity �Fig. 3�a��. Next, the bulk silicon is
isolated from the devices with a 0.6 �m layer of thermally grown
silicon oxide followed by a 0.8 �m layer of nonstoichiometric
�silicon-rich� low-stress silicon nitride �N0�. Up to five layers of
fine-grained doped polysilicon �P0–P4� are deposited from silane
in a low-pressure chemical vapor-deposition furnace. These layers
are used for making electrical connections and microelectrodes in
order to impart electric fields into microfluidic compartments.
Polysilicon layers are on the order of 1–2 �m thick, with the
exception of P0, which is 0.3 �m. The sacrificial oxide layers are
deposited using both low pressure chemical vapor deposition and
plasma enhanced chemical vapor deposition. Chemical-
mechanical polishing is used to reduce the topography in the final
two sacrificial oxide layers. The structural layers of silicon nitride
�N1: 0.3 �m, N2: 0.8 �m thick� provide optically transparent and
electrically insulating surfaces that serve as barriers for the fluidic
components. Figure 3�a� indicates a deep etch through several
sacrificial oxide films down to N1. This trench is then filled with

Fig. 3 „a… SwIFT™ film stack with five polysilicon, three silicon
nitride, and four sacrificial silicon oxide layers. „b… Scanning
electron micrograph of a series of dielectrophoretic gates. The
fluid channel sidewalls are denoted by the white arrows. Scale
bar=30 �m.
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N2, forming sidewalls and ceiling covers for fluidic channel com-
ponents. The total film thickness is 16 �m, and the distance be-
tween N1 and N2 is �7 �m. The channels are fabricated in a
fully encapsulated state, obviating the need for substrate bonding,
a process that slows the device production and reduces reproduc-
ibility.

After completing the surface micromachining, access ports to
the fluidic devices are fabricated using deep reactive ion etching
�20�. The sacrificial oxide layers in devices are then removed in an
HF-based etchant at 20°C for 100–200 min depending on the
length of the fluidic channel. The devices are then rinsed in deion-
ized �DI� water and dried in supercritical CO2. Figure 3�b� shows
a completed fluidic device with integrated dielectrophoretic gates.
The N2 channel sidewalls are visible, along with the P3 electrode
traces perpendicular to the fluid channel axis. P4 was not utilized
in this particular device. The circular depressions are vias that
connect the P3 microelectrodes to the P0 microelectrodes �not
visible�, allowing them to be held at the same potential. The long
depressions in the center of the P3 traces are due to etches in N2
that allow the P3 microelectrode to be in direct contact with the
fluid flowing through the channel. Similar etches are made in N1
to allow P0 to contact the fluid.

Experimental Methods
Following �11�, experiments were performed on aqueous mix-

tures of latex beads �1 �m dia, Duke Scientific� chosen to be
representative on non-biological particles and heat-killed Staphy-
lococcus aureus bacteria �Molecular Probes� chosen as sample
biological particles. Latex beads and bacteria were suspended at
0.01% �v/v� in DI water. An equal mixture of bacteria and beads
in DI water was prepared immediately before the separation ex-
periments to minimize aggregation. The conductivity of the DI
water was measured to be 1 �S/cm. The latex particle polariz-
ability, ��−0.45−0.27i for 10–30 MHz, was calculated from the
low-field measurements �11�.

For testing devices, glass capillaries �285 �m outer diameter�
were placed into the counterbores and epoxied in place. The cap-
illary connections were then sealed with polydimethylsiloxane
�GE RTV615A� to prevent leaking. Teflon tubing �30 gage� was
run from the capillaries to a syringe and the fluid suspensions
were injected manually. The dielectrophoretic gates were ener-
gized with a sinusoidal wave, 10 V peak-to-peak �pp� and
0.1–30 MHz, using a function generator. The experiments were
recorded onto a videotape, and later digitized for analysis. The
fluid velocities were estimated by calculating particle velocities on
the videotape, either with the gates inactivated or when the par-
ticles were at large distances �x�50 �m� from the activated
gates.

Experimental Results
Figure 4�a� shows the separation of a mixture of 1 �m latex

particles from dead Staphylococcus aureus bacteria. The gate was
set to 10 v peak-to-peak at 15 MHz. It is evident that the posi-
tively polarized bacteria accumulate at the gate microelectrode,
while the negatively polarized latex particles are repelled from the
gate region. Upon injection of the mixture, the fluid velocity was
measured to be 5–10 �m/s, and at this velocity, the latex par-
ticles formed a distinct front �40 �m upstream from the gate. In
contrast, the bacteria accumulate at the gate, and, as the polariza-
tion interactions occur, long pearl chains of bacteria form that
exceed the bounds of the gate. Three individual bacteria had their
distance-dependent velocities, u�x�, tracked from their entrance
into the channel until they came to rest at the tips of pearl chains
5 �m upstream from the gate �Fig. 4�b��. The fluid velocity was
kept low �5–10 �m/s�, which was much smaller than the DEP-
induced particle velocity. The large DEP-induced particle veloci-
ties made it difficult to track bacteria within 20 �m of the gates,
hence the velocity data were fitted to an exponential curve �u

=1330e−0.122x �m/s, x in micrometer, with r2=0.92� to provide
an estimate of the particle velocities generated near the gate. Thus,
it was found that the bacteria were accelerated to velocities up to
�700 �m/s before coming to rest adjacent to the gate. Using Eq.
�3�, the maximum estimated forces exerted on individual bacteria
are on the order of 5 pN. Figure 4�b� also shows the velocity data
of four latex particles that were tracked while undergoing nDEP.
In addition, the fluid velocity was increased in order to examine
the strength of the repulsive force. It was found that, after the
latex particles were injected at velocities of 75–100 �m/s, the
DEP force started to exert an observable deceleration of particles
at x�30 �m from the gate, with full repulsion bringing particles
to a halt �12 �m upstream from the gate.

At higher fluid velocities, the latex particles formed fronts
closer to the gate and the interparticle interactions became more
apparent. In particular, at a fluid velocity of �45 �m/s �the flow
rate �6 pL/s� the repelled latex particles aggregated at x
�25 �m upstream from the center of the gate with the average
particle concentration in the aggregate running as high as 40–50%
�v/v� �estimated from the images on the assumption that aggre-
gates span the channel height� �11�. The particle aggregate oscil-
lated between forming one bolus being located in the center of the
channel and two rotating boluses being located at the channel
sidewalls. Figure 5 documents that switching the gate frequency
from 15 MHz to 100 kHz causes the particle aggregates adjacent
to the channel sidewalls to traverse the gate, while the bacteria
remain trapped, and in the presence of an estimated fluid velocity
of 45 �m/s, all the accumulated latex particles escape the gate

Fig. 4 „a… At 10 V pp, 15 MHz, bacteria adhere to the gate,
while latex particles are repulsed and form a front „dashed
line…. Fluid velocity, 5–10 �m/s. Scale bar=20 �m. „b… DEP-
induced velocity of bacteria „n=3… and latex particles „n=4… at
15 MHz as a function of distance from the center of the gate.
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within �5 s following this frequency shift. However, the pDEP
force on the bacteria at this frequency is still strong enough to
withstand the fluid flow. This release of the latex particles may be
related to the reduction of their relative polarizability, Re��*�,
with decreasing field frequency, as was observed in �21� under
similar conditions, or with an AC generated electroosmotic fluid
flow caused by the action of the field along the double layer at the
channel sidewalls �22�. Further analysis of the gate operation at
submegahertz frequencies is in progress and will constitute the
subject of future publication.

Discussion

Simulations of the profile of �Erms
2 provide a rough estimate for

the DEP-induced velocity of individual bacteria and latex particles
using Eq. �3�. In particular, with �Erms

2 �7�1015 V2/m3 at a dis-
tance of 20 �m from the center of the gate, the DEP-induced
velocity of a single bacteria at this distance is estimated to be
�94–188 �m/s �estimating Re��*� to be in the range from 0.2 to
0.4�, whereas the exponential fit of the experimental velocity data
yields 108 �m/s. Measurements of Re��*� for the bacteria will be
conducted in the future. The predictions of the DEP-induced ve-
locity of the latex particles also agree with our observations in
that, at a fluid velocity of 10 �m/s, a 0.5 �m radius latex particle
should experience a drag force of �0.08 pN if brought to rest by
an opposing DEP force. Using our simulations for �Erms

2 and Eq.
�1�, FDEP should first reach 0.08 pN �45 �m from the gate,
which agrees reasonably with our observations of the formation of
a particle front at 40 �m from the gate. At a fluid velocity of
45 �m/s, our simulations predict that the latex particles should be
brought to rest at x�33 �m upstream from the microelectrodes,
while we observed the formation of a front at x�25 �m from the
gate. These estimates agree reasonably well with our observations.
Several factors that have been neglected in these estimates are
likely responsible for any discrepancies, for instance, interparticle
interactions and additional hydrodynamic forces caused by the
formation of particle aggregates in the channel.

The separation efficiency of the dielectrophoretic gate is opti-
mal at relatively low fluid velocities and long separation times. No
bacteria or particles were observed to escape the trap during its
activation at 10 V, 15 MHz and at fluid velocities up to
�600 �m/s. Our simulations indicate that the gates should be
able to repel particles traveling up to �1000 �m/s. Latex par-
ticles were observed to traverse the gate only when the amount of
collected particles began to fill the entire yz cross section of the

channel in which case particles near the sidewalls, the weakest
point of the FDEP, were found to escape the gate.

Another phenomenon was observed in several instances when a
bacterial cell adhered to a single latex particle thereby creating a
bacteria-particle complex susceptible to pDEP which, therefore,
was trapped at the gate. In such cases, within 5–10 s of the com-
plex coming to rest, the latex particle was observed to break away
from the bacteria and to accelerate toward the rest of the repelled
particle aggregate upstream of the gate. Thus, longer separation
times may be required to reduce the effect of this phenomenon,
which could possibly contaminate the analysis and identification
procedures conducted on the biosuspension.

Conclusions
We have described a surface-micromachined dielectrophoretic

gate for separating micrometer-sized analytes based on their in-
trinsic polarizability properties and validated experimentally basic
relations for estimating the gate performance. The separation tech-
nique uses AC dielectrophoresis along the flow streamlines ac-
companied by the field-induced phase separation through electri-
cal and hydrodynamic interparticle interactions. The self-sealed
microfluidic devices were fabricated using a surface- and bulk-
micromachining technology, which is amendable to mass produc-
tion. Setting the device to a moderate voltage in the radio fre-
quency range selectively removed bacteria cells from a mixture
containing nonbiological particles. The low aspect ratio of the
device permitted a high-efficiency separation because the range of
the dielectrophoretic force extended throughout the cross section
of the fluid channel. This reduces the number of particles that
escape the trap, producing highly concentrated �by factor over 500
the initial concentration� and spatially separated aggregates of
negatively and positively polarizable analytes. We see a potential
use for the proposed technology for discriminating between bio-
logical and nonbiological analytes that are captured in air samples.
Future work is aimed at the optimization of the gating technique
and the development of integrated biodetection systems.
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Magnetorheological Jet „MR
JetTM

… Finishing Technology
Conformal (or freeform) and steep concave optics are important classes of optics that are
difficult to finish using conventional techniques due to mechanical interferences and steep
local slopes. One suitable way to polish these classes of optics is by using a jet of
abrasive/fluid mixture. The energy required for polishing may be supplied by the radial
spread of a liquid jet, which impinges a surface to be polished. Such fluid flow may
generate sufficient surface shear stress to provide material removal in the regime of
chemical mechanical polishing. Once translated into a polishing technique, this unique
tool may resolve a challenging problem of finishing steep concave surfaces and cavities.
A fundamental property of a fluid jet is that it begins to lose its coherence as the jet exits
a nozzle. This is due to a combination of abruptly imposed longitudinal and lateral
pressure gradients, surface tension forces, and aerodynamic disturbance. This results in
instability of the flow over the impact zone and consequently polishing spot instability. To
be utilized in deterministic high precision finishing of remote objects, a stable, relatively
high-speed, low viscosity fluid jet, which remains collimated and coherent before it im-
pinges the surface to be polished, is required. A method of jet stabilization has been
proposed, developed, and demonstrated whereby the round jet of magnetorheological
fluid is magnetized by an axial magnetic field when it flows out of the nozzle. It has been
experimentally shown that a magnetically stabilized round jet of magnetorheological
(MR) polishing fluid generates a reproducible material removal function (polishing spot)
at a distance of several tens of centimeters from the nozzle. The interferometrically
derived distribution of material removal for an axisymmetric MR Jet™ , which impinges
normal to a plane glass surface, coincides well with the radial distribution of rate of
work calculated using computational fluid dynamics (CFD) modeling. Polishing results
support the assertion that the MR Jet finishing process may produce high precision
surfaces on glass and single crystals. The technology is most attractive for the finishing
of complex shapes like freeform optics, steep concaves, and cavities.
�DOI: 10.1115/1.2140802�

Keywords: optical, finishing, jet, magnetorheological (MR), polishing, sub-aperture

1 Introduction
In traditional polishing, particularly in chemo-mechanical pol-

ishing �CMP�, material removal results from the polishing slurry
particles’ mechanical interaction with a chemically reacting work-
piece surface, resulting in material removal on the atomic or mo-
lecular level �1�. For example, in glass polishing, the chemical
activity of water lowers the energy needed to break the silicon-
oxide bonds, whereas the mechanically activated abrasive par-
ticles perform work in removing the silica glass basic unit �silica
tetrahedron�, and transporting the debris away from the workpiece
surface. Further, in this particular case, the rate of the bond-
rupture reaction depends not only on chemical environment, but
also on the magnitude of the applied mechanical stress �2�. Dif-
ferent methods are used to supply mechanical energy to the work-
piece surface, thus providing a mechanical interaction between
polishing particles and the workpiece surface to be polished �3�.
Considerable recent attention has been focused on the techniques
where such energy is supplied by fluid flow, which may generate
sufficient surface stresses to provide material removal in the re-
gime of CMP. The advantage of this approach lies in the fact that,
in contrast to conventional “contact” polishing, the surface normal
stress and the surface indentation are not dominant in the process
of material removal. This results in the absence of a subsurface
damaged layer.

In magnetorheological finishing �MRF®�, the mechanical en-
ergy required for material removal over a portion of the workpiece

surface is generated by the magnetically controlled hydrodynamic
flow of a magnetorheological polishing fluid. A fundamental ad-
vantage of MRF over existing technologies is that this sub-
aperture polishing tool conforms to the local surface shape and
does not “wear” since the state of the recirculated fluid is continu-
ously monitored and maintained, heat is removed, and polishing is
done inside a stable magnetic field. MRF can produce surface
accuracy on the order of 30 nm peak-to-valley �p-v� and surface
micro-roughness less than 1 nm root mean square �rms� �4,5�.

A method called “Hydroplane Polishing” is based on the phe-
nomenon of hydrodynamic lubrication �6�. In this process, mate-
rial removal is achieved by way of hydrodynamic flow of abrasive
particle/fluid mixture. Multiple inclined surfaces are formed in a
circumferential direction on a circular plate, which then rotates in
fluid. Hydrodynamic pressure that is generated through the fluid
wedge balances the normal load. The workpiece floats above the
plate surface and is polished by the abrasive particles, which pass
through the converging gap with the fluid.

A hydrodynamic principle is also used to provide high precision
polishing in “Elastic Emission Machining” �7�. In this technique,
a loaded elastic polyurethane ball polishes the workpiece as it
scans over the part surface. The ball is rotated rapidly in a polish-
ing fluid and, due to hydrodynamic forces, floats above the work-
piece surface. The floating gap, which is created by an elasto-
hydrodynamic lubrication state, is much larger than the diameter
of the abrasive particles, but is still very small. The mechanism
proposed for this process is an elastic bombardment of the surface
by the polishing particles.

Previous work has shown that water jets can be used to polish
materials such as glass, diamond, ceramics, stainless steel, and
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alloys �8�. The surface quality strongly depends on the size and
impact angle of the abrasive grains. Surface roughness of Ra
�130 nm on glass has been achieved after processing. An appro-
priate adjustment of process parameters, such as jet velocity, abra-
sive size, and concentration makes reduction of surface roughness
on glass to Ra=1.2 nm possible �9�.

A fundamental property of a fluid jet is that it begins to lose its
coherence as the jet exits a nozzle, due to a combination of
abruptly imposed longitudinal and lateral pressure gradients, sur-
face tension forces, and aerodynamic disturbances. The destabiliz-
ing aerodynamic disturbances are dramatically increased with jet

velocity. This causes the high-speed liquid jet, which is the prime
interest for finishing, to break into droplets and progressively
spread out. For this reason, the diameter of a water jet used for
cutting, for example, is very small to provide precision machining
and high unit pressure. Also, a nozzle is situated as close to the
work piece to be cut as is practically possible. Typically, such
cutting jets contain abrasive particles with a high enough kinetic
energy capable of sputtering �chipping� material away from the
surface in the impact zone. Although a flow regime, where the jet
can polish rather than cut, requires lower jet velocity, the problem
of jet stability still persists. As this takes place, the jet irregularity
increases progressively with the distance from the nozzle. That
results in instability of the flow over the impact zone and conse-
quently polishing spot instability, which is unacceptable for deter-
ministic, high precision finishing. A reduction of jet velocity in
order to obtain a coherent jet is impractical because it results in
low impact energy, and therefore, low material removal rate. In-
creasing jet stability with fluid viscosity proportionally increases
the resistance to fluid flow in the delivery system, and conse-
quently, the pumping power required to deliver the fluid to the
nozzle. It makes a high speed, high-viscosity jet impractical for
polishing.

To be utilized in deterministic high precision finishing, a stable,
relatively high-speed, low-viscosity fluid jet, which remains colli-
mated and coherent before it impinges the surface, is required.
Such a unique tool may also resolve a challenging problem of
high precision finishing of steep concave surfaces and cavities.

2 Magnetorheological Jet (MR JetTM) Polishing

2.1 Jet Stabilization. In contrast to known jet polishing
methods �8,9� where material removal relies on the kinetic energy
of impacting abrasive particles, the technique discussed in this
paper is based on an assumption that the energy required for the
abrasive to provide polishing may be supplied by the radial spread
of an abrasive liquid jet when it impinges upon the surface to be
polished �10�. Such shear flow of abrasive slurry may result in
material removal, which is characteristic to polishing. As was
mentioned above, the liquid jet breaks down at a very short dis-

Fig. 1 Jet snapshot images „velocity=30 m/s, nozzle diameter=2 mm…

Fig. 2 Experimental setup
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tance from the nozzle �a few nozzle diameters� resulting in insta-
bility of the impinging flow, which in this case, is highly sensitive
to the nozzle offset distance. As applied to polishing, this limits
configurations where the removal function is stable resulting in
significant restrictions on finishing of complex shapes.

A method of jet stabilization has been proposed, developed, and
demonstrated, whereby the round jet of magnetorheological fluid,
containing abrasive particles, is magnetized by an axial magnetic
field when it flows out of the nozzle �10–12�. A local magnetic

field induces longitudinal fibrillation and high apparent viscosity
within the MR fluid �5�. In doing so, the application of the mag-
netic field adjacent to the nozzle results in suppression of all of the
most dangerous initial disturbances. As a result, the MR fluid
ejected from the nozzle defines a highly collimated, coherent jet.
The stabilizing structure induced by the magnetic field within the
jet gradually begins to decay while the jet passes beyond the field.
However, remnant structure still suppresses disturbances and,
thus, consequent stabilization of the MR Jet can persist for a suf-
ficient time such that the jet may travel up to several meters �de-
pending on the jet diameter� without significant spreading and loss
of structure.

In the case of water, the jet remains stable only for �2 nozzle
diameters �transparent section of the jet at the outlet�. MR fluid

Fig. 3 MR Jet process flow diagram

Fig. 4 Example of spots taken on fused silica glass at different
jet velocities. The dashed white line gives the orientation of the
profile shown in Fig. 5.

Fig. 5 MR Jet spot profiles of spots taken with a stand-off
distance of 50 mm „filled makers… and 150 mm „open markers…

Fig. 6 Subtraction of the full material removal maps „spots…
from Fig. 5 showing insensitivity to stand-off distances

Fig. 7 „a… Image showing four 100 nm deep spots taken in
succession; „b… standard deviation map of the four spots with a
peak-to-valley of 4.2 nm
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has higher viscosity and therefore the coherent portion of the jet
extends on �7–8 diameters �see Fig. 1�. Initial disturbances �vis-
ible in the form of ripples on the surface of the coherent part of
the jet� eventually result in the jet breakdown and rapid spreading.
Magnetized at the outlet, the jet of MR fluid remains coherent for
more than 200 diameters. The MR fluid jets shown in Fig. 1 have
the same fluid viscosity and jet velocity. This means that with the
magnet off, the viscosity is too low and the velocity is too high to

provide a stable jet of fluid. With the magnet on, the same low-
viscosity, high-velocity jet of MR fluid is stabilized by the appli-
cation of the magnetic field.

2.2 Experimental Setup. An MR Jet polishing system, a por-
tion of which is shown in Fig. 2, has been constructed using a
5-axis CNC platform and polishing control software developed by

Fig. 8 Demonstration of ability to correct figure to extremely
high precision with good convergence rate using MR Jet

Fig. 9 Roughness map of a fused silica surface polished with MR Jet „NewView 5000 White
Light Interferometer, 20Ã magnification…

Fig. 10 „a… Photograph of a concave ogive, showing the glass insert at the
center of an aluminum body, and „b… schematic of the ogive during polishing—
the internal surface is kept normal to the impinging jet. The diameter of the
aluminum shell is 58 mm and the total sag of the ogive surface is 39 mm.

Fig. 11 Polishing results using the MR Jet system for the
ogive shown in Fig. 9. Before MR Jet polishing, the p-v was
210 nm and the rms was 50 nm; after, the p-v was reduced by
5Ã and the rms by 8Ã to 44 nm and 6 nm, respectively.
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QED Technologies®. The finishing process flow diagram is shown
in Fig. 3. A computer code generates the machine control pro-
grams for polishing. Inputs to this code are the material removal
spot �Fig. 4� and the initial surface figure. Outputs are the machine
program �instructions in the form of velocity schedule� and a pre-
diction of the final surface figure. The PC based software uses a
series of complex algorithms, and convolves the removal function
with the error function to derive an operating program for the
CNC machine. The code specifies angles and velocities �dwell
time� for the controller, the number of sweeps required between
positive and negative angles, and the total estimated processing
time. The CNC platform then carries out these motion instructions
and executes the dwell schedule prescribed by the software as the
workpiece is moved through the polishing zone.

The machine delivery system is comprised of a mixing vessel to
disperse the solids in the MR fluid, a pump, means to maintain
temperature and viscosity of the fluid, as well as pressure and flow
sensors to monitor the system conditions. A MR shaper that uses
the properties of the MR fluid and a magnetic field to stabilize the
MR Jet is located beneath the spindle of the CNC platform. With
the magnet activated, a collimated jet is directed vertically up-
wards to the part held by the spindle. Finally, means have been
implemented to contain, collect, and recirculate the MR fluid after
it impinges upon the part surface.

2.3 Removal Function. Typical MR Jet removal functions
�or polishing “spots”� are shown in Fig. 4. These two spots were
taken at different jet velocities by dwelling the 1.5 mm diameter
jet upon the stationary flat fused silica surface for a prescribed
period of time. The distance between the nozzle exit and the part
surface �the stand-off distance� was 50 mm for both. The spot on
the left had a moderate fluid jet velocity giving a peak removal
rate of 1.44 m/min and volumetric removal rate of
0.033 mm3/min. The spot on the right was created with an iden-
tical setup; only a more aggressive jet velocity was used giving a
peak removal rate of 18.6 m/min and volumetric removal rate of
0.51 mm3/min. This demonstrates the ability to adjust material
removal rate by more than an order of magnitude using the same
setup. It is possible to vary removal rate further with appropriate
system adjustments. The dashed white line in Fig. 4 shows the
orientation of the profile shown in Fig. 5. Notice from this figure
that there is no removal in the center of the spot. This is because
the material removal is due to shear flow, which is zero at the
center. This will be discussed in greater detail in later sections.

The stability of the removal function is demonstrated in Figs. 5
and 6. Figure 5 shows removal function profiles �the scan along
the spot diameter� typical for MR Jet polishing spots. The two
spot profiles given in this figure were taken with two different
stand-off distances �the distance between the part surface and the
nozzle exit, as shown in Fig. 2�. The two distances were 50 mm
�filled markers� and 150 mm �open markers� resulting in the same
spot profile as shown in the figure. This is further emphasized in
Fig. 6, where the maps of the material removal distribution are
subtracted. The maximum variation in these removal maps is only
6.5%, even though the separation between the part and the nozzle
changes by 100 mm. This quality is particularly important when
considering precision finishing of steep concave �or freeform�
optics.

Polishing spot stability is the most important characteristic re-
quired for high precision deterministic finishing. Evaluation of
MR Jet polishing spot stability was performed as follows. Four
spots were taken in succession at different locations on the same
premeasured part �see Fig. 7�a��. The variance between the four
spots �the standard deviation� is shown in Fig. 7�b�. The error in
this map is only 4.2 nm p-v and 0.54 nm rms, for 100 nm deep
spots. These results demonstrate an exceptional MR Jet removal
function, stability, and versatility, making it a valuable tool for
high precision finishing of complex surfaces.

2.4 Polishing Performance.

2.4.1 Flats. Given the stable spot, QED control software, and
CNC control, MR Jet can be used to accurately correct surface
figures. Figure 8 shows the results of polishing a flat fused silica
part with 470 nm p-v of primarily power error. The error was
reduced to 32 nm p-v in a single iteration, and as low as
13 nm p-v after the second iteration. Furthermore, the MR Jet
process has regularly demonstrated the ability to achieve rough-
ness values much better than 1 nm rms. Figure 9 shows an ex-
ample of one of these roughness maps of fused silica glass and an
accompanying profile plot.

2.4.2 Conformal Optics. The unique qualities of the MR Jet
process enable the manufacture of conformal optics. This impor-
tant class of optics is made up of designs, such as domes and other
steep concaves, where the shape of the optic is driven by such
considerations as the aerodynamic requirements instead of the op-
tical requirements. Since the optics have to work in transmission,
the internal concave surface must be polished as well as the ex-
ternal surface. This is a challenging problem for most polishing
processes because of the deep sag of these surfaces. MR Jet offers
a solution to reach into the center and correct this internal surface
figure, as demonstrated above by the insensitivity to stand-off
distance.

A small concave glass insert was placed inside an aluminum
shell that approximates a missile nose cone ogive �Fig. 10�a��.
The radius of the concave surface was 20 mm and the diameter
was 23 mm. The part was polished in a rotational mode, rotating
on axis and sweeping around its center of curvature to keep the jet
normal to the optical surface �Fig. 10�b��. Excellent polishing re-
sults were obtained. Figure 11 shows the figure error of the con-
cave surface before and after MR Jet. Both the symmetric and

Fig. 12 Flow curve of an MR fluid outside of the magnetic field

Fig. 13 Theoretical and experimental removal rate and rate of
work profiles
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asymmetric errors were corrected, leaving a peak-to-valley error
of less than 50 nm �a 5� improvement from the initial condi-
tions�. In addition, the rms error was improved by more than
8� �0.05 mm to 0.006 mm�.

3 Model Validation

3.1 Theoretical Considerations. The proposed model of jet
polishing assumes that the energy for abrasive particles/surface
mechanical interaction is provided by the radial laminar flow,
which occurs as a result of impingement of the coherent liquid
column with the surface. Also, the process of material removal is
considered in the context of the fundamental Preston’s statement
that “the rate of polishing of the glass �that is, the rate at which
material is removed� is proportional to the rate at which work is
done on each unit area of the glass” �13�.

To put it another way,

Ṙ � Ẇ �1�

where Ṙ is the material removal rate and Ẇ is the rate of work
done at the surface.

Generally, the rate of work done by the fluid at the control
surface is �14�

Ẇ = −�
S

F� · V� dA �2�

where F� is the vector fluid stress applied to the element dA of the

control surface and V� is the vector fluid velocity. The fluid stress
can be divided into components perpendicular to dA and in the
plane of dA,

F� = s�n + ��x �3�

where s�n is the normal stress and ��x is the shear stress. These

considerations imply that Ẇ can be expanded as follows:

Ẇ = −�
S

��x · V� dA −�
S

s�n · V� dA �4�

The fluid shear stress can arise only from viscosity, whereas the
normal stress can result from both pressure and viscosity. How-
ever, in the case under consideration when there is no normal fluid
velocity component at the surface, s�n will be dominated by the
compressive stress of fluid pressure:

s�n = − pn̂, but s�n · V� = 0 �5�

where p is the fluid hydrostatic pressure and n̂ is the normal to the
surface. The rate of work at the surface then becomes

Ẇ = −�
S

��x · V� dA �6�

For the one-dimensional radial flow, which takes place in the
case under consideration, the local rate of the work done at the
surface will be

Ẇr = �rVr �7�

where �r is local shear stress and Vr is local fluid velocity.
From Eqs. �1� and �7�, it follows that the local removal rate is

proportional to the local shear stress times local fluid velocity

Ṙr � �rVr �8�
As expected, the same qualitative result follows from Preston’s

classical expression:

Ṙ = kPU = k
L

S
U = k

F

�S
U = k

�U

�
= k

Ẇ

�
�9�

where L is the normal load, S is the surface area on which wear
occurs, F is the frictional force between the glass and the polish-
ing lap, � is the coefficient of friction, � is the surface shear stress,

Ẇ is the rate of work done per unit area �the power input� and k is
the Preston coefficient, which is process-dependent and combines
surface chemistry, abrasion effects, and specifics of part-polisher
interaction.

3.2 Model Verification. An effort was made to find the cor-
relation between the experimental removal function and the theo-
retical model described above. A normalized experimental radial
removal rate profile was compared with the normalized radial dis-
tribution of the rate of work done at the surface calculated using a
commercially available CFD package �15�. Due to the fact that the
MR fluid is not affected by the magnetic field at the impingement
zone, an assumption is made that it can be modeled as a Newton-
ian fluid. This assumption is validated by Fig. 12, which shows
the flow curve of an MR fluid in the absence of the magnetic field.
The small deviation from Newtonian behavior at low shear rate
can be ignored for the flow regime considered in this model.

The two-dimensional solution was found using the free surface
volume of fluid �VOF� method and laminar flow was assumed �the
Reynold’s number of the jet varies from 1500 to 9000, and that of
the radial flow varied from 500 to 3000�. In addition, some con-
siderations were given to the time step and mesh size so that an
accurate and stable solution could be achieved in a reasonable
amount of time. That is, there needs to be sufficient elements
across the boundary layer to calculate the flow, and the time step
must be adjusted as the mesh is refined so that the calculation
remains stable. However, the time step cannot be so small that it is
cost prohibitive with respect to calculation time. The model setup
used is shown in Fig. 13. Important parameters used for the cal-
culation are as follows:

• The jet radius=0.8–1.2 mm
• Mesh area=5 mm high �parallel to jet�, 10 mm wide

�parallel to workpiece surface�
• Vertical mesh size: ratio of 1.05, cell height=41 �m at

wall, to 280 �m at “top” �at the inlet�
• Horizontal mesh size: inside jet=100 �m uniform width,

outside jet: ratio=1.0075, minimum cell width
=120 �m, maximum cell width=185 �m.

The evaluation of accuracy was based on the magnitude of the
velocity at the stagnation point, where it should be equal to zero.
An error of less than 1% was achieved.

Results of the flow modeling are shown in Fig. 14. Experimen-
tal data for removal rate �square markers� were taken at three jet
velocities �15, 20, and 27 m/s� with a jet diameter of 2.4 mm. The

Fig. 14 Theoretical and experimental removal rate and rate of
work profiles; v=jet velocity
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lines in Fig. 14 represent the radial distribution of the computed
rate of the work done at the surface under similar conditions. The
triangles show the calculated pressure profile. Note that this plot
represents half of the removal profile shown in Fig. 5. Good cor-
relation is observed between the removal rate profile and distribu-
tion of the rate of work done at the surface providing strong sup-
port for the model presented above. It is also worth noting that the
position of the peak removal rate corresponds to the position of
minimum pressure, whereas no removal occurs at maximum pres-
sure. It means that the normal stress does not contribute in mate-
rial removal as the model suggests. This gives strong support to
our assertion that the shear mode is indeed responsible for mate-
rial removal. In Fig. 15, the normalized experimental peak of
removal rate �squares� and calculated normalized local rate of
work at the position of peak removal are plotted against the jet
velocity. The experiments were done with a viscosity of
0.05 Pa·s, and two different nozzle diameters. Again, there is a
good correlation between the predicted and experimental results,
in spite of the fact that calculations were done for different nozzle
diameters and fluid viscosities. According to Fig. 15, the cubic
dependence of removal rate on jet velocity prevails �solid line�.

4 Summary
It has been demonstrated that impingement of a magnetically

stabilized, collimated jet of MR fluid induces radial surface flow,
which results in generation of the polishing spot. In numerous
experiments with different process parameters �jet velocities,
nozzle diameters, and fluid viscosity� it was shown that material
removal in the polishing spot closely correlates with the computed
rate of work done at the surface by the fluid. This agrees with the
fundamental basis of Preston’s model. It was also established that
MR Jet finishing can produce high precision surfaces on the order

of tens of nanometers p-v with roughness �1 nm rms. Due to
insensitivity to the offset distance, this technique may be valuable
in finishing complex shapes, especially those with steep concaves
and parts with a variety of cavities.
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Plane Poiseuille Flow of Two
Compatible Polymers: Influence
of the Interphase on the Flow
Stability
This paper deals with coextrusion flows of two compatible polymers which are known to
be generally more stable than the same flows of incompatible systems. We show that the
weak response to disturbance of such flows can be predicted by considering an interphase
of nonzero thickness (corresponding to an interdiffusion zone) instead of a purely geo-
metrical interface between the two layers. As a first step we try to explain the weak
sensibility to disturbance of compatible systems by the sole presence of this intermediate
layer. For that purpose we study the linear stability response to very long waves of a
three-layer phase Poiseuille flow with an inner thin layer which represents the inter-
phase. Although this fact is an approximation, it nevertheless takes into account the
diffusion phenomena which are generated in the interphase. This first approach (corre-
sponding to a reduction in the effective viscosity ratio) is shown to explain the diminished
growth rates but not the reduction in the size of the unstable region. As a second step, we
formulate an energetic approach of the problem. We evaluate the energy dissipated dur-
ing the interdiffusion process and the variation of kinetic energy of the global system. A
modified growth rate is then determined by taking into account the energy dissipated by
the interdiffusion process. This lower growth rate enables us to explain the increase of the
stable domain in the case of compatible polymeric systems. �DOI: 10.1115/1.2136931�

1 Introduction
Coextrusion is an industrial process used to form multilayered

sheets or films. Each layer of these composite materials provides a
specific end-use characteristic, such as optical, mechanical, and
barrier properties. Final products suit a large range of applications
from food packaging to reflective polarizers. It has been found
that under certain operating conditions, wavy interfaces are ob-
served that originate inside the die. This interfacial instability is
detrimental to the quality of the final product.

Yih �1� first studied the stability of Poiseuille flows of two
Newtonian fluids submitted to very long waves. Using linear sta-
bility theory he showed that a viscosity difference could lead to
instability, even for low Reynolds numbers. His analysis was ex-
tended by numerous authors to other shearing flows. Indeed, many
studies have been devoted to this topic. Therefore it is not possible
to give an exhaustive survey of the existing literature. We shall
quickly list some works of close relevance to the present paper.
For example let us mention the asymptotic methods developed by
Hooper �2�, Hooper and Boyd �3�, or Yiantsios and Higgins �4�.
Numerical solutions were proposed by Anturkar et al. �5,6�. A
global overview of theoretical results is proposed by Joseph and
Renardy �7�. Several authors carried out stability experiments
mainly on polymeric liquids: Han �8�, Khan and Han �9�, Karagi-
annis �10�, and White et al. �11�. All these investigations show that
the interfacial stability of multilayer flows is determined by a
number of factors including thickness, viscosity, density, elasticity
ratios, and interfacial tensions. One notes that all these works have
in common to consider flows of immiscible fluids.

Very comprehensive experiments have been carried out by Wil-
son and Khomami on both miscible and immiscible fluids
�12–14�. Their facility made use of a system for introducing tem-

porally regular disturbances with a controllable amplitude and fre-
quency. The authors first investigated flows of immiscible fluids.
They found that theoretically predicted growth rates agree with
their experimental data. Then, they considered a superposed plane
Poiseuille flow of a compatible polymer system. In such a system,
there is a null interfacial tension and polymer chains diffuse
across the original interface, forming a diffuse interface �i.e., an
interphase�. In this case growth rates have been found to be much
lower than those obtained for incompatible systems and for clas-
sical theoretical studies. The authors proposed two mechanisms to
explain this weak sensibility to disturbances. According to them,
the “oscillatory flow in the vicinity of the interface enhances the
mixing and diffusion process near the interface which in turn re-
duces the effective viscosity ratio and removes energy from the
growing interfacial wave. It is this reduction in the effective vis-
cosity ratio and the removal of wave energy which are responsible
for the diminished growth rates and the reduction in the size of the
unstable region.”

The aim of this paper is to examine the contribution of the
mechanisms proposed by Wilson and Khomami. As a first step we
study the influence of the reduction in the effective viscosity ratio.
For so doing, we consider the linear stability of a three-layer plane
Poiseuille flow with an inner thin layer in which viscosity is in-
termediate between the ones of the two outer layers. As a second
step, we examine the consequences of the removal of wave energy
due to the interdiffusion process. In this section, energetic aspects
of the formation of the interphase are taken into account in the
stability analysis.

2 Mechanical Approach

2.1 Governing Equations. In this section we want to deter-
mine whether the sole presence of an inner thin layer is able to
influence the stability of the flow of a compatible polymeric sys-
tem. For so doing, we consider a three-layer Poiseuille flow �in
which layers 1, 2, and 3 are occupied respectively by polymer A,
the interphase, and polymer B� through an infinite parallel plate
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channel geometry, as shown in Fig. 1.
Each fluid is supposed to be incompressible and Newtonian.

Thus, in each layer k�k=1,2 ,3�, the governing equations are the
incompressibility and the Navier-Stokes equations. Let us note
that in this model, the viscosity �2 and the thickness d2 of the
interphase are neither a function of time nor of space variables. In
this section we consider indeed that the interphase is already
formed. Moreover, the density is assumed to be the same in each
layer as the effect of gravity is not studied. Thus, the equations of
the problem are in each layer

�� · u� k = 0

�1�

�
Du� k

Dt
= − �� p + �k�u� k

where p is the pressure, � is the density, and the material deriva-
tive is defined by

D/Dt = �/�t + �u� · �� �

This system is completed by the no-slip boundary condition and
the continuity conditions at the interfaces on velocity and stress
tensor �written here in the case of a null surface tension between
the layers�:

∀x1 � R, �u�1�x2=0 = �u�2�x2=d1+d2+d3
= 0�

�u� �1,2 = 0� �2�

��= · n� �1,2 = 0�

Dimensionless equations are then written by using the following
dimensionless variables for space, velocity, time, pressure and
stress:

x̂j =
xj

dtot
, û� k =

u� k

V
, t̂ =

tV−

dtot
, p̂ =

p

�V2 , �= =
1

�V2�=

where circumflex accents over variables denote dimensionless
variables. Moreover, dtot is defined as the total height of the flow
and V �given in Appendix A� as an average velocity:

dtot = d1 + d2 + d3

�3�

V =
1

dtot
�

lk

ul,kdx2

in which lk is the thickness of the domain occupied by fluid k.
Thickness ratios, viscosity ratios and Reynolds number are scaled
with respect to layer 1:

�k =
dk

d1
, mk =

�k

�1
, Re =

�Vdtot

�1

Finally, the dimensionless equations in fluid k read as follows:

�̂� · û� k = 0

�4�
D̂û� k

D̂t̂
= − �̂� p̂ +

mk

Re
�̂û� k

where new operators are defined with dimensionless variables.
The boundary conditions are

∀ x̂1 � R, �û�1�x̂2=0 = �û�2�x̂2=1 = 0�

�5�
�û� �1,2 = 0� , ��̂= · n�1,2 = 0�

In the following, we shall omit accents over dimensionless vari-
ables.

2.2 Primary Flow. The undisturbed flow �or primary flow� is
a channel flow with parabolic velocity profiles:

ūl,k = A0k + A1kx2 + A2kx2
2 �6�

where bars over variables correspond to undisturbed variables.
The constants Ajk �given in Appendix A� involve viscosity and
thickness ratios.

2.3 Perturbation Flow. An infinitesimal disturbance is ap-
plied to the primary flow to study the stability of the interphase.
The motion is resolved into the primary motion and the perturba-
tion motion:

uj,k = ūj,k + ūj,k

�7�
p = p̄ + p̄

where tildes over variables correspond to disturbed variables. In
our stability analysis we assume the validity of Squire’s theorem
�15� �see also �16��, namely the two-dimensional disturbances are
more unstable than three-dimensional ones, and therefore we con-
sider two-dimensional disturbances. The customary representation
of the velocity components �expressed in terms of a stream func-
tion� and the disturbed pressures in the linear stability analysis has
an exponential form:

�̂k�x1,x2,t� = �k�x2�ei��x1−ct�

�8�
p̃�x1,x2,t� = f�x2�ei��x1−ct�

where � is the �real� wave number and c is the complex velocity
of the disturbance. By substituting the perturbed variables into the
motion equations, one obtains the Orr-Sommerfeld equations for
each layer k:

Fig. 1 Definition sketch
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�k
IV − 2�2�k� + �4� = i�

Re

mk
2 ���k� − �2�k��ū1,k − c� − ū1,k� �k� �9�

where the derivatives with respect to x2 are denoted by primes.
The interfacial boundary conditions need to be evaluated at the
disturbed locations of the interfaces. These interfacial conditions
about the steady-state interfacial positions are then expressed
through Taylor series. The latter and the no-slip conditions at the
walls give rise to the following set of boundary conditions: No
slip at the walls

�1�0� = �1��0� = 0
�10�

�3�1� = �3��1� = 0

Continuity of u1,k at the interfaces (evaluated at x2=d1 and d2 for
k=1 and 2)

�k� − �k+1� =
�k

c − ū1,k

�A1,k − A1,k+1� �11�

Continuity of u2,k at the interfaces

�k = �k+1 �12�
Continuity of shear stress at the interfaces

� d2

dx2
2 + �2��mk�k − mk+1�k+1� = 0 �13�

Continuity of normal stress at the interfaces

� d3

dx2
3 − 3�2 d

dx2
��mk�k − mk+1�k+1� = 0 �14�

The Orr-Sommerfeld equations, the boundary conditions, and the
interfacial conditions form an eigenvalue problem, which may
admit several eigenvalues c and the corresponding eigenfunctions
�k. Such a problem can be solved numerically �as it is the case for
example in �6��. However, in the present work we obtain an ana-
lytical solution as a first step by using a nonsingular perturbation
for � in the vicinity of 0. This corresponds to the case of very long
waves, which is relevant for particle applications. Hence, the
eigenfunctions and the eigenvalues are expanded as a regular per-
turbation series of � as follows:

�k = �k,0 + ��k,1 + O��2�
�15�

c = c0 + �c1 + O��2�

The calculation leads to two zeroth-order eigenvalues, c0,a and
c0,b �given in appendix B�, which are found to be real and corre-
spond to the amplification factors of waves. These two-phase ve-
locities give two possible modes of wave motion. We must then
determine the first-order solutions, as the stability of the flow is
determined by the sign of the imaginary part of c �the flow is
respectively stable, unstable, or neutrally stable according to
whether ci is negative, positive, or zero�. We obtain two first-order
eigenvalues which are purely imaginary. Therefore, the stability
conditions are determined by the signs of c1,a and c1,b. We now
have to take into account the fact that d2 �i.e., thickness of the
inner layer� is negligible as compared to d1 and d3. Thus the two
eigenvalues are expanded and approximated by the following Tay-
lor series:

c1,a = i Re J1,a + O�d2�
�16�

c1,b = i Re J1,b�d2
2� + O�d2

3�

where J1,a and J1,b are functions of thickness and viscosity ratios
which result from straightforward but cumbersome calculations.
For full details, we refer the reader to Appendix B. Our results are
similar to those of Scotto �17�, who considered the inner layer as
a tie layer between two polymers having different properties need-
ing to be stuck together. The function J1,a depends only on m3 and

�3. As a matter of fact, c1,a is independent of the inner layer and is
shown to be identical to the eigenvalue of the two-fluid flow made
of the two outer fluids �i.e., fluids A and B�. As for the eigenvalue
c1,b, it represents the effect of the inner layer. Scotto showed that

sign�J1,b� = sign�J1,a� 	 �
3 − 
2��
2 − 
1� �17�
As the inner layer is supposed to represent an interphase, we can
assume that its viscosity is intermediate between that of the two
outer layers. Thus, J1,a and J1,b are always of the same sign. As a
consequence, the signs of c1,a and c1,b are always the same as the
one of the eigenvalues of the two-fluid flow made of the two outer
fluids. The stability criteria of the two-layer Poiseuille flow com-
posed by the two outer layers are similar to those proposed by
Yiantsios and Higgins �4� as

sign�c1,a� = sign��m3 − 1��m3 − �3
2�� �18�

It means that the less viscous fluid has to be in the thinner layer in
order for the flow to be stable.

As the stability criteria for the three-layer flow are similar to the
ones for the two-layer flow, we can say that the reduction in the
effective viscosity ratio does not affect the stability criteria of the
flow. It means that if the two-layer flow is unstable, the three-layer
flow will remain unstable. The same conclusion holds for the op-
posite: if the two-layer flow is stable, the three-layer flow will
remain stable. As a conclusion, the reduction in the effective vis-
cosity ratio enables us to explain the diminished growth rates
observed for flows of compatible fluids but not the reduction in
the size of the unstable region. For that purpose, we need a
complementary approach in which energetic aspects of the forma-
tion of the interphase are taken into account in the stability analy-
sis.

3 Energetic Approach

3.1 General Formulation. This section devoted to the ener-
getic approach falls into three parts. As a first step we evaluate the
energy balance of the system in the ideal case of two incompatible
fluids. Then we estimate the energy dissipated by the interdiffu-
sion process, which corresponds to the removal of wave energy.
We finally determine the energy available for the growth of the
wave in the case of two compatible polymers.

As a first step, the disturbance of two incompatible fluids is
considered from the energy point of view. For so doing we mul-
tiply the Navier-Stokes equations by the velocity disturbance and
integrate over the thickness of each layer and over one wavelength
as done by Albert and Charru �18�. This calculus enables us to

determine numerically Ėk—which is the rate of change of the
kinetic energy of the disturbance in layer k�k=1,3�—by

Ėk =
dk

2

D

Dt�
�k

�u1,k
2 + u2,k

2 �dx1dx2 �19�

where �k is the domain occupied by the fluid k �whose boundaries
are a function of time and x1 as the interface is submitted to a
perturbation wave�. Finally, we determine the mechanical energy

of the global flow Ėtot �which is the sum of Ė1 and Ė3� and nor-
malize it so that

Ėtot = � Im�c� �20�
In a second step the rate of dissipated energy by the interdiffusion

process Ėi is determined. A way to evaluate Ėi is to examine the
adhesive bond strength of the final product. Thus, the fracture
energy G is the energy needed to pull out the interpenetrating
chains per unit area. One should keep in mind that the orientation
of polymer chains in a shear flow field profoundly influences the
rate of the interdiffusion process and consequently the fracture
energy. The latter has to be determined under shear flow condi-
tions. We have chosen to follow the approach of Kim and Han

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 29

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�19� who proposed the following expression to evaluate G under a
shear flow field �considering a Fickean one-dimensional diffu-
sion�:

G � �t�avg���1/4 �21�

where  is the interaction parameter and t is the diffusion time
�expressed in Appendix C as a function of the Reynolds number�.
The average orientation factor �avg is defined by

�avg = 	�A�B �22�

where �A and �B are respectively the orientation factors for poly-
mers A and B in steady shear flow. These factors depend on the
steady-state shear compliance of the polymers and on shear stress
at the interface. The formula that gives the orientation factor as a

function of the Reynolds number may be found in Appendix C.

Then, the energy dissipated by the interdiffusion process is Ėi
normalized so that at rest �i.e., for �int=0�

Ėi = G = n�d �23�

where, according to Wu et al. �20�, “n is the number of chains
bridging the original interface per unit area, � the attractive energy
per unit length of interpenetrating chain, and d the root-mean-
square interpenetration depth �i.e., the interfacial thickness�.”

As a last step, we determine Ėc, the energy rate available for the
growth of the wave in the case of two compatible polymers. To

obtain it we hypothesized that the total energy rate Ėtot is made up

of two terms: the energy rate required to create the interphase Ėi

and the energy rate available for the wave growth Ėc. We therefore
assume that

Ėe = Ėtot − Ėi �24�

The results obtained through the energetic approach will now be
illustrated by a few examples.

3.2 Illustrative Examples

3.2.1 Incompatible Polymers. Let us first consider a plane Poi-
seuille flow of two incompatible polymers �=0� submitted to
very long waves. The stability criterion of the flow is given by the
sign of the imaginary part of the complex velocity of the distur-
bance c. With the previous notations, the flow is stable if
J1,a��3 ,m3��0 �and unstable if J1,a��3 ,m3��0�. For sake of clar-
ity, we recall here that J1,a is defined by Eq. �16�. The complete
expression is given by Eqs. �B4� and �B5�. In Fig. 2 are repre-
sented the zones where parameter J1,a is either positive or nega-
tive in the plane ��3 ,m3�. Black zones correspond to stable re-
gions and gray zones to unstable regions. As expected, the
stability map does not depend on the Reynolds number and is only
governed by the viscosity and thickness ratios.

3.2.2 Compatible Polymers. The influence of the diffusion at
the interface is now quantified by means of an energy concept. In
the case of incompatible polymers, the energy available for the
growth of the wave is given by

Fig. 2 Stability map in the case �=0. Black zones correspond
to stable regions and gray zones to unstable regions.

Fig. 3 Stability maps for Re=10−5. „a… �=−0.1 and „b… �=−0.7.
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Ėtot = � · Im�c� = � · Re · Jl,a��3,m3� �25�

It means that the stability of the flow is only determined by �3 and
m3 whereas the energy available for the growth is also a function
of the Reynolds number.

Let us now consider that some interdiffusion process takes
place between the two polymers. The energy rate dissipated by

interdiffusion Ėi is not only a function of �3 and m3 but also of the
Reynolds number and the interaction parameter. The energy avail-
able for the growth of the wave can be expressed by

Ėc = Ėtot − Ėi = � · Re · Jl,a��3,m3� − Ė1��3,m3,Re,� �26�
We can then determine a modified growth rate by taking into
account the energy dissipated by the interdiffusion process:

Im�cc� = Ėc/� �27�

In the following figures �Figs. 3 and 4� we shall represent
Im�cc� /Re in the plane ��3 ,m3� for several values of Re and .
The reference is given by Fig. 2 which corresponds to the case
=0.

Let us consider an extrusion die with the following dimensions:
height H=10−3 m and length L=10−2 m. We also assume that
each polymer presents a density of 103 kg/m3 and a steady-state
shear compliance of 10−5 Pa−1. The viscosity of layer 1 is set to be
104 Pa s and the wave number of the disturbance � is set to be
equal to 10. We first examine the case of a very weak, but realis-
tic, Reynolds number �Re=10−5�.

Figures 3�a� and 3�b� correspond respectively to the cases 

Fig. 4 Stability maps for Re=5.10−4. „a… �=−0.1 and „b… �=−0.7.

Fig. 5 Stability maps for Re=5.10−3. „a… �=−0.1 and „b… �=−0.7.
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=−0.1 and =−0.7, the latter characterizing a very strong chemi-
cal affinity. We see that taking into account the interdiffusion pro-
cess enlarges the stable domains. This model enables us to explain
Wilson and Khomami’s observation of a reduction in the size of
the unstable region �14�. However, it should be noted that the
interaction parameter weakly affects the stability.

Let us now consider a larger value for the Reynolds number,
say Re=10−3. Figures 4�a� and 4�b� correspond respectively to the
cases =−0.1 and =−0.7. For this value of the Reynolds num-
ber, taking into account interdiffusion phenomena has no signifi-
cant effect on the stability maps. Indeed, at higher Reynolds num-

bers, more energy is available for the growth of the rate �as Ė

�Re� and less energy is dissipated by interdiffusion �as Ėi
�1/Re�. Note that plots corresponding to intermediate cases �Re
=5.10−5 and Re=10−4� can be found in Appendix D.

Our energetic approach of the problem enables us to explain the
reduction in the size of the unstable regions at low Reynolds num-
bers. However, it seems to underestimate the role of chemical
affinity on energy dissipation.

4 Conclusion
In this study we proposed a way to explain why stratified flows

of compatible polymers are generally more stable than the same
flows of incompatible polymers. To do so, we began by stating the
existence of a third intermediary layer �which has not been previ-
ously done� as a result of polymer diffusion through the inner
boundary between the two polymers. Next, we showed that taking
into account an interphase between the polymers �i.e., considering
the reduction in the effective viscosity ratio� enables us to explain
the diminished growth rates observed but not the reduction of the
unstable region. We then investigated the reduction of available
energy due to mixing and diffusion processes. This second ap-
proach enables us to explain the reduction of the unstable regions
at low Reynolds numbers. However, one must keep in mind that
the two phenomena �reduction in the effective viscosity ratio and
removal of wave energy� take place simultaneously and both tend
to damp down the waves initially imposed to the flow. Further
investigations will be dedicated to moderate wavelengths and to a
viscoelastic model for the fluid. A way to evaluate the energy
dissipated by the diffusion process through statistical consider-
ations is also in progress.
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Nomenclature
� � wave number of the disturbance
c � complex velocity of the disturbance �=cr+ ici�

dk � thickness of layer k
ej � unit vector
�k � thickness ratio dk /dl

�g�k � jump in g at the interface between layers k and
k+ l

Jb,i
0 � steady-state shear compliance of polymer i

mk � viscosity ratio �k /�l
n � unit vector normal to the interface

�k � viscosity of layer k
Re � Reynolds number
�= � stress tensor

�int � shear stress at the interface
uk � velocity field in layer k

uj,k � projection of uk on ej
�k � stream function of layer k

Appendix A: Primary Flow

V =
1

2
�−

dp

dx1
� d1

2

�1

h3�1 + �2 + �3�
�m2m3 + m3�2 + m2�3�

�A1�

A01 = 0 A02

=
1

h3

�m2 − 1���m2�3 + m2�3
2� + �m3 + 2m2�3��2 + m3�2

2�
m2�1 + �2 + �3�

�A2�

Fig. 6 Stability maps for Re=10−4. „a… �=−0.1 and „b… �=−0.7.
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Appendix B: Perturbation Flow
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Appendix C: Energy Dissipation
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Appendix D: Additional Plots
See Figs. 5 and 6.
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A Numerical Study of Dean
Instability in Non-Newtonian
Fluids
We present a numerical study of Dean instability for non-Newtonian fluids in a laminar
180 deg curved-channel flow of rectangular cross section. A methodology based on the
Papanastasiou model (Papanastasiou, T. C., 1987, J. Rheol., 31(5), pp. 385–404) was
developed to take into account the Bingham-type rheological behavior. After validation of
the numerical methodology, simulations were carried out (using FLUENT CFD code) for
Newtonian and non-Newtonian fluids in curved channels of square or rectangular cross
section and for a large aspect and curvature ratios. A criterion based on the axial
velocity gradient was defined to detect the instability threshold. This criterion was used to
optimize the grid geometry. The effects of curvature and aspect ratio on the Dean insta-
bility are studied for all fluids, Newtonian and non-Newtonian. In particular, we show
that the critical value of the Dean number decreases with increasing curvature ratio. The
variation of the critical Dean number with aspect ratio is less regular. The results are
compared to those for Newtonian fluids to emphasize the effect of the power-law index
and the Bingham number. The onset of Dean instability is delayed with increasing power-
law index. The same delay is observed in Bingham fluids when the Bingham number is
increased. �DOI: 10.1115/1.2136926�

Keywords: Dean instability, curved channel, Newtonian fluids, non-Newtonian fluids,
numerical study

1 Introduction
Curved channels are widely used in engineering applications,

such as turbomachinery and heat exchangers for heating or cool-
ing systems, because they provide, in addition to compactness,
high heat and mass-transfer rates, transverse mixing, and an ex-
tended laminar flow regime.

In laminar flow through ducts, the effect of even very slight
curvature is not negligible. Streamline curvature instigates a sec-
ondary flow that consists of a pair of counter-rotating roll-cells
when viewed in the duct cross section. These are called Dean
roll-cells after W. R. Dean �1�, who developed a theory of this
secondary flow phenomenon. We thus call the flow of a fluid in a
curved duct Dean flow and the corresponding control parameter
the Dean number, defined as

Dn =
UmDh

�
�Dh

Rc
�1�

Here Um is the mean velocity, � the kinematic viscosity, Dh the
hydraulic diameter and Rc the mean curvature radius. The plane
separating two Dean roll-cells �the symmetry plane� is parallel to
the curvature plane of the bend. Beyond a certain critical flow
conditions, another pair of counter-rotating vortices appears on the
concave wall of the duct; these are due to the Dean instability and
are called Dean vortices.

The first solution for curved circular flow for Newtonian fluids
was suggested by Dean �1�. He proved the existence of secondary
flow found experimentally by Eustice �2� by injecting ink into
water flowing through a coiled pipe. Early works on Newtonian
curved flows of circular cross section is presented in the review
article by Berger et al. �3�.

Cheng and Akiyama �4� presented a numerical solution for
steady fully developed laminar flow and convective heat transfer

in curved rectangular channels with aspect ratios b /a=0.2, 0.5, 1,
2, and 5. Cheng et al. �5� reported an experimental study using
flow visualization techniques of a fully developed laminar flow in
a curved rectangular duct for aspect ratios b /a=1, 2, 3, 4, 5, 6, 8,
10, and 12 with a /Rc=0.2, and aspect ratio b /a=12 with a /Rc
=0.025. They showed that further secondary flow vortices are set
up in addition to the main secondary flow vortices, and that the
number of additional vortex pairs depends on the aspect ratio and
the Dean number. The evolution of the critical Dean number with
aspect ratio was described.

Sugiyama et al. �6� reported an experimental investigation of a
fully developed laminar flow in 20 mm wide curved rectangular
channels of aspect ratios ranging from 0.5 to 2.5 and curvature
ratios ranging from 5 to 8. They showed the development of the
secondary flow vortices with Dean number. The critical Dean
number takes minimum and maximum values at aspect ratios of
about 1 and 2, respectively.

Recently, Chandratilleke and Nursubyakto �7� presented a nu-
merical simulation of the secondary flow characteristics through
curved rectangular ducts. They varied the aspect ratios from 1 to 8
and the Dean numbers from 20 to 500. Chandratilleke and Nur-
subyakto �7� reported also that the number of additional-Dean
vortices formed in the flow is strongly influenced by the duct
aspect ratio.

Because of its importance in polymer, biomedical/
pharmaceutical, petroleum, and food processing, the flow behav-
ior of non-Newtonian fluids in straight or curved circular or non-
circular channels has received much attention. In straight tubes,
we refer to Cho and Hartnett �8� for power-law fluids; Chen et al.
�9� and Varadis et al. �10� for Bingham-plastic fluids. Fewer stud-
ies have been devoted to the flow of power law fluids in curved
circular tubes, see Agrawal et al. �11�, Hsu and Patanker �12�, and
Shanthini and Nandakumar �13�. These three works showed that
the secondary flow becomes weak as the power-law index de-
creases, but that its dependence on Dean number is similar to that
of Newtonian fluids and the axial velocity profile tends to flatten
as the power-law index decreases. The Dean vortices are clear in
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the study of Kumar et al. �14� for the power-law fluid flow in
curved square duct. The results demonstrate the existence of dual
solutions for a certain range of Dean number and power-law in-
dex. Little attention has been given to the flow of non-Newtonian
fluids in curved rectangular channels.

The purpose of the present work is to characterize non-
Newtonian laminar flow and Dean instability in curved channels
of rectangular section with various aspect and curvature ratios.
First, we describe and validate the methodology. Second, we study
the Dean instability in Newtonian fluids. The influence of the
aspect ratio and the curvature ratio is particularly emphasized.
Finally, we study the Dean instability in non-Newtonian fluids.
We focus on the effect of the power-law index and the Bingham
number.

2 Methodology and Validation

2.1 Description of the General Numerical Methodology. In
the numerical study, we used FLUENT CFD code to solve the sta-
tionary three-dimensional equations characterizing the flow in
curved rectangular cross sections. Fluent proposes many algo-
rithms to solve these equations. We choose an algorithm with the
segregated solver �the solution algorithm in which the governing
equations are solved sequentially� to iterate the nonlinear partial
differential equations. The segregated solver is more adapted to a
large grid, as in our case. To calculate pressure at the nodes, we
chose the body-force-weighted scheme, which works well when
inertia forces are not negligible. FLUENT uses the equation of con-
tinuity to deduce the pressure necessary to resolve the equations
of motion. To obtain the pressure in the continuity equation, we
choose the SIMPLEC algorithm for the pressure-velocity coupling.
For the momentum equation, we used the QUICK scheme because
it is recommended when there are rotating flows inside the flow.

GAMBIT is the program used to generate the grid or mesh for the
FLUENT CFD solver. Because of our geometry’s symmetry, we
chose to impose a symmetry condition in order to decrease the
required calculation capacity for the large geometries �b /a�8�
and thus to limit our geometry to a half section. Calculations are
carried out in a length upstream of the study section. At the entry
of the straight length, a constant velocity equal to the mean ve-
locity is imposed. At the exit of this length, the flow is hydrody-
namically developed and reaches the study section. Convergence
is controlled by following the evolution of residual for the veloc-
ity components and the continuity equation. For the velocity com-
ponents, the residues represent the sum on all grid cells of the
difference between the value of a variable calculated in one cell
and that calculated by applying the conservation equation to the
cells close to the first. For the continuity equation, the residues
represent the ratio of the mass flow rate in a given iteration to the
mass flow rate maximum of the first five iterations. In the conver-
gence, the residual evolution must converge toward small �in any
case �10−6� and stable quantities. Figure 1 shows the coordinate
system used for the laminar flow in a 180 deg curved rectangular
channel. The cross section of the channel is a rectangle of width a
and height b.

2.2 Non-Newtonian Fluid Behavior: Formulation. For non-
Newtonian fluids, the generalized Reynolds number is established
so that the relation between the friction factor and the Reynolds
number for isothermal laminar flow of Newtonian fluids is the
same as for non-Newtonian fluids �15�.

The relation between the friction factor and the Reynolds num-
ber for isothermal laminar flow of Newtonian fluids in ducts is
given by

Cf

2
=

2�w

�Um2 =
2

�Um2

Dh�P

4L
=

�

Re
�2�

where Cf is the friction factor, �P is the pressure loss, L is the
length of the channel, �w the wall shear stress, Um is the mean
flow velocity, and � is a dimensionless geometrical parameter

whose values for different ducts are given by Shah and London
�16�. The Dean number for non-Newtonian fluids is defined as

Dn = Reg�Dh

Rc
�3�

The result is given in Table 1. For Bingham fluids, the dimen-
sionless radius of the plug-flow region �0 �where �0=�c /�w, �c is
the yield stress� is initialized to start calculations for a given Dean
number because the Dean number depends on this parameter. At
the end of this calculation, we derive the pressure loss ��P� on the
straight channel. Knowing the relation between the pressure loss
and the wall shear stress �w, we determine the wall shear stress �w.
Since we know the yield shear stress �c, we can calculate the exact
value of �0 and correct the Dean number.

The FLUENT CFD code does not include in its data library the
rheological behavior of yield-stress fluids, so a subroutine that
takes this behavior into account was developed. To handle the
discontinuity in yield-stress fluids between the sheared and un-
sheared zone, the subroutine added to FLUENT is based on a model
that is valid for both sheared and unsheared areas. Different mod-
els were tested

The Papanastasiou model �17�

� = �c�1 − e−m�̇� + k�̇n �4�

where m is the stress growth exponent; � and �̇ are, respectively,
the stress and the shear tensors. For low shear rates, this model
transforms the plug region �in which the velocity is constant� into
a region of high viscosity. It was shown by Papanastasiou �17�
that this equation closely mimics an ideal Bingham plastic fluid
for m�1000

The Bercovier and Engelman model �18�

� = � �c

�̇ + 	
+ k�̇n−1��̇ �5�

where 	 is the model parameter.
The biviscosity model �19�

�� = 
s�̇ si �̇ � �̇c

� = �k�̇n−1 +
�c

�̇
��̇ si �̇ � �̇c

�6�

where 
s is the solid viscosity and �̇c the critical shear.
In order to validate the subroutine, we studied the laminar flow

of Newtonian and non-Newtonian fluids in a cylindrical tube. In
each case, the parameters of the different models were adjusted to
represent the rheological model of the fluid studied, as given in

Fig. 1 Coordinate system
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Table 1.
The methodology is validated for a straight tube two meters

long. To preserve the accuracy of the velocity profile near the
wall, the mesh was made finer close to the wall. The exit velocity
profiles obtained using the model are compared to the well-known
analytical expressions given in Table 1. Calculations are carried
out for a flat velocity profile at the tube entrance.

Figure 2 compares the velocity profiles of a Newtonian fluid
and a pseudoplastic fluid of 0.5 power-law index and consistency
of 2.7 for a generalized Reynolds number of 200. The distribution
of Newtonian velocity across the tube has a parabolic profile. For
the pseudoplastic fluid, the decrease of the power-law index flat-
tens the velocity profile; i.e., the velocity gradient is increased in
the tube-wall region and decreased near the tube center. The two
velocity profiles show a high-velocity gradient near the wall and a
central core where the velocity gradient is zero �the plastic
region�.

In order to choose the model used in our study of a yield-stress
fluid, we compared the three models to the analytical profile and
an experimental profile �20�. The calculations were made in a

circular straight tube and for the same generalized Reynolds num-
ber �Reg=14�. The profiles are presented in Fig. 3; we note that
the three models give satisfactory results.

Figure 4 presents the difference between the analytically and
numerically determined velocity profiles obtained with each
model. It is noted that the Papanastatiou model �17� gives the
smallest errors, and we retain this model hereafter.

For yield-stress fluids, we have compared the velocity profiles
for two Bingham fluids �Bm=�cD /Um
w, where 
w the fluid
viscosity at the wall� equal to 8.5 and 21 of the same viscosity and
for a generalized Reynolds number of 200. The results are given
in Fig. 5. Figure 5 shows that an increase in the Bingham number
leads to an increase in the unsheared zone and to a reduction of
the velocity maximum.

Figures 2 and 5 show good agreement between the analytical
and numerical velocity profiles. The influence of the power-law
index and the Bingham number on the flow described here is the
same as that reported in the literature. This validates the model
and lets us use it with confidence in what follows.

Table 1 Rheological models of fluids used in this work

Fluid
Constitutive

equation Circular channel Rectangular channel
Generalized Reynolds

number
Fully developed velocity

profile
Generalized Reynolds

number

Newtonian
� = 
�̇

Re =
UmD

�

u�r�
Um

= 2	1 − � r

R
�2
 Re =

UmDh

�

Power law
� = k�̇n

Reg = 81−n� 4n

3n + 1
�n�Um2−nDn

k

u�r�
Um

=
3n + 1

n + 1
	1 − � r

R
��n+1�/n
 Reg =

�Um2−nDh
n

k	 24n + �

�24 + ��n
�n−1

Bingham
� = �c + 
w�̇ if � � �c

�̇ = 0 if � � �c

Reg = Rew�cc

Rew =
�UmDh


w

�cc = 	1 −
4�0

3
+

�0
4

3

 �

u�r�
Um

=
Bm

r

�w

�c
	1 − � r

R
�2


	 − 2
�c

�w
�1 −

r

R
�
 if � � �c

u�r� = Cde = Uc if � � �c

�
Reg = Rew�pp

Rew =
�UmDh


w
k

�pp = �1 − �0�	1 −
�0

2
−

�0
2

2

n

Fig. 2 Dimensionless velocity profiles for Newtonian fluid „n
=1… and pseudoplastic fluid „n=0.5…

Fig. 3 Dimensionless velocity profiles for Bingham fluids
„Reg=14…
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2.3 Criterion for Detection of Dean Instability. We must
now define an accurate and reliable criterion for detection of Dean
instability. The secondary flow in a curved duct consists of a pair
of counter-rotating symmetrical vortices called Dean cells. Be-
yond a critical Dean number, another pair of counter-rotating vor-
tices appears on the concave duct wall �Fig. 6�. The question is
how to calculate the critical Dean number or, equivalently, how to
detect the passage from two to four cells.

In the literature, the criterion for the onset of instability is vi-
sual, i.e., the visualization of the Dean vortices. However, visual-
ization remains a qualitative criterion. Here, we instead first locate
the center of the Dean vortices for a supercritical Dean number
�Fig. 6�b�� and then decrease the Dean number until the Dean
vortices disappear �Fig. 6�a��. Line AA in Fig. 6�b� shows the
junction between the centers of the Dean vortices.

Figure 7, which plots the axial velocity gradient �dw /dy� along
the line AA in Fig. 6�b�, shows that for a square duct the axial
velocity gradient has a double peak at low Dean numbers and
three peaks at high Dean numbers. The passage from two to three
peaks is chosen as the criterion for the instability threshold. To
facilitate the detection of this passage, we calculate the slope of

the velocity gradient along the x coordinate: for low Dean num-
bers the slope is canceled three times, whereas for high Dean
numbers it is canceled five times.

2.4 Optimization of the Mesh Grid. To optimize the mesh
grid for a curved square duct �generated with GAMBIT�, we tested
several grids that increased from 20 to 38 nodes on the flat and
curved walls and from 5 to 10 mm between two successive grid
surfaces. The axial velocity gradient at the center of the Dean
vortices �along line AA of Fig. 6� was plotted for various grids.
All calculations are made for Dean number 110. The number of
flat wall nodes is optimized by fixing the number of nodes on the
curved walls, and the number of curved wall nodes is optimized
by fixing the number of flat wall nodes. Finally, the distance be-
tween two successive grid surfaces is optimized. It appears rea-
sonable to use 24 nodes on the flat and curved walls, which cor-
responds to square meshes of 0.830.83 mm2 on the surface and

Fig. 4 Relative differences between analytical and calculated
velocity profile for different regularization models

Fig. 5 Dimensionless velocity profiles for Bingham fluids

Fig. 6 Contour plots of helicity in square duct section: „a… flow
without instability and „b… flow with instability
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10 mm between two successive grid surfaces. For the curved duct
of rectangular cross section, we have retained the same meshes
along the duct.

3 Dean Instability in Newtonian Fluids

3.1 Effect of the Curvature Ratio. For curved ducts of cir-
cular cross section, most analyses �2,21� indicate that the Dean
number is the primary parameter and that the effect of curvature is
completely contained in this parameter. Many authors have tried
to detect the critical Dean number for ducts of square cross sec-
tion; Bara et al. �22�, Ghia and Sokhey �23�, Hille et al. �24�, using
visualization techniques, give critical Dean numbers, respectively,
equal to 137, 143, and 150. This discrepancy is due to the fact that
the Dean number is not the only parameter influencing the flow in
curved ducts.

Figure 8 shows the influence of the curvature ratio on the onset
of Dean instability for various aspect ratios, together with the
available numerical and experimental results. Figure 8 shows that
when the curvature ratio increases up to 10 for aspect ratio 8, the
critical Dean number decreases quickly, and therefore the onset of
instability is advanced; after a curvature ratio of 10, the critical
Dean number reduction is weak. For the square section, the reduc-
tion in the critical Dean number is weak, and the onset of insta-
bility is independent of the curvature ratio.

Thangam and Hur �25� showed that the secondary flow inten-

sity decreases when the curvature ratio increases. Ghia and
Sokhey �23� and Kumar et al. �14� showed that when the Dean
number is held constant, a change in curvature ratio induces a
small variation in the axial velocity profiles. It can be concluded
that the instability appears because of the decrease of the axial
curved length when the curvature ratio decreases. To form Dean
vortices in small axial curved lengths, a high centrifugal force is
necessary.

3.2 Effect of the Aspect Ratio. The effect of the aspect ratio
variation on the onset of Dean instability is shown in Fig. 9. Here
the curvature ratio is held constant and equal to 10. This figure
compares our results with those of previous studies. The shape of
our curve and the level of the critical Dean numbers are globally
in a good agreement with the literature results, especially those of
Cheng et al. �5� and Sugiyama et al. �6�. The apparent differences
arise first because we used a quite a rigorous criterion to detect the
onset of instability, and second, because the curvature ratio differs
from ours in each study. Compared to the Rc /Dh effect, we note
that the variation of the critical Dean number with the duct aspect
ratio is less regular. The critical Dean number shows a local mini-
mum at b /a=1 and increases for aspect ratios smaller than 1 and
between 1 and 4. Beyond b /a=4, it decreases and reaches a con-
stant value at b /a=8, a minimum value that corresponds to the
case of curved parallel plates.

In order to better understand the implication of the aspect ratio
for the critical Dean number evolution observed in Fig. 9, we
consider the relative effect of the secondary flow strength and the
confinement. We thus present in Fig. 10 the axial velocity profiles
in the horizontal midsurfaces at the exit of the 180 deg curved
channel for Dn=55 �below the critical Dean number for all cases�
and for aspect ratios ranging from 0.5 to 8. The curvature ratio is
held constant at 10. We note that a decrease in the aspect ratio
causes a stronger secondary flow; that is, the high-momentum
fluid is transferred toward the concave wall and the low-
momentum fluid near the concave wall is moved to the center of
the channel cross section. This phenomenon promotes the occur-
rence of Dean instability.

On the other hand, when the aspect ratio increases, the effect of
the confinement is less sensitive in the sense that the Dean vorti-
ces cover more space and are freer to expand. In fact, when the
Dean number and the curvature ratio are kept constant and the
channel aspect ratio increases, both the effect of confinement and
the resistance to the secondary flow at the center of the channel
cross section decrease �26�; i.e., it is easier to form Dean vortices,
and the occurrence of instability is advanced.

Thus, when the aspect ratio is increased, these two effects com-

Fig. 7 Axial velocity gradient along line AA of Fig. 6

Fig. 8 Effect of curvature ratio in Dean instability

Fig. 9 Effect of aspect ratio on Dean instability
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pete and their relative magnitudes explain the different zones of
the critical Dean number evolution. For a low aspect ratio �b /a
�1�, the confinement effect is predominant and therefore the criti-
cal Dean number increases. In the range between 1 and 8, both
effects must be considered. However, from 1 to 4, the secondary
flow effect predominates and, consequently, the critical Dean
number increases in this zone, whereas for aspect ratio from 4 to
8, the effect of nonconfinement becomes predominant and there-
fore the critical Dean number decrease. Above aspect ratio 8, the
influence of the side walls is minimal, and therefore the critical
Dean number decreases moderately and the occurrence of Dean
instability becomes essentially independent of aspect ratio. Figure
11 shows the vortex organization in the channel cross section at
aspect ratios b /a=8 and b /a=0.5 at supercritical Dean number
�Dn=300�, in order to give a visual feeling for the confinement
effect.

4 Dean Instability in Pseudoplastic Fluids
The effect of the power-law index on the axial velocity profile

along the horizontal and vertical midsurfaces is illustrated in Fig.
12. The comparison is made for a curved channel with square
cross section at the same generalized Dean number of 120. At the
inlet of the curved channel, the flow is fully developed laminar
straight channel flow.

In the horizontal midsurfaces �x=0�, the axial velocity profile is
a single peak shifted toward the concave wall due to centrifugal force. When the power-law index decreases, the axial velocity

profile shifts more toward the concave wall and tends to flatten
more than for the Newtonian fluid. The maximum axial velocity
decreases as the power-law index is reduced, so that the pseudo-
plastic fluids cause the attenuation of the secondary flow. In the
vertical midsurfaces �y=a /2�, the axial velocity profile is double-
peaked and symmetric for Newtonian as well as for power-law
fluids. The two-peaks shape indicates the existence of two sym-
metrical Dean cells, and the peaks correspond to the center of the
Dean cells. These results are in good agreement with those of
Kumar et al. �14� and Ranade and Ulbrecht �27�, who observed
the same effect of the power-law index.

Figure 13 shows the influence of the power-law index on Dean
instability. The critical Dean number decreases with increasing
power-law index n. Therefore in non-Newtonian fluids, the local
change of apparent viscosity affects the onset of instability. For
pseudoplastic fluids, the apparent viscosity is weaker near the wall
and higher at the center of the cross section, and thus it is difficult
for unstable Dean cells to form. Agrawal et al. �11� showed that

Fig. 10 Effect of aspect ratio on axial velocity profile: Dn=55
and Rc /Dh=10

Fig. 11 Vortex organization for two aspect ratios at Dn=300:
„a… b /a=8 and „b… b /a=0.5

Fig. 12 Effect of power-law index on the axial velocity profiles
for a generalized Dean number of 120 in curved square channel
with Rc /Dh=10: „a… vertical midsurfaces „y=a /2… and „b… hori-
zontal midsurfaces „x=0…
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pseudoplasticity decreases the intensity of the secondary flow. All
these factors lead to a delay in the onset of Dean instability with
increasing power-law index.

5 Dean Instability in the Bingham Fluids
The influence of the Bingham number on the instability occur-

rence is shown in Fig. 14. Increasing Bingham number delays the
onset of Dean instability. Alexandrou et al. �28� observed that the
size of the plug region increases with the Bingham number. In
addition, when the Bingham number increases, the yield stress
effect in the flow increases. To overcome the effect of the yield
stress increasing, the inertial forces and hence the Dean number
must be increased.

6 Conclusions
Dean instability in curved-channel laminar flow of square and

rectangular cross sections was studied numerically for Newtonian
and non-Newtonian fluids. Using the Papanastasiou model �17� to
simulate the flow of yield stress fluids gives results in good agree-
ment with the analytical results. Prediction of the critical Dean
number by the precise criterion developed in this work permits
detection of the instability closer to its onset than in previous
work.

For all fluids, we show that critical Dean number decreases
with increasing duct curvature ratio. The variation of the critical
Dean number with the duct aspect ratio is less regular.

The pseudoplastic fluids cause an attenuation of the secondary
flow. As the power-law index is reduced, the axial velocity profile
shifts toward the concave wall and is flatter than in the Newtonian
fluid. The maximum value of the axial velocity decreases, and the
onset of Dean instability is delayed with increasing power-law
index.

The power-law index and the Bingham number play a signifi-
cant role in the onset of Dean instability. The same delay is ob-
served in the Bingham fluids when the Bingham number is in-
creased.

Future work will focus on the experimental study of the Dean
instability in Newtonian and non-Newtonian fluids.

Nomenclature
a � width of the channel cross section
b � height of the channel cross section

Bm � Bingham number Bm=�cD /Um
w
Cf � friction factor Cf /2=2�w /�Um2

D � pipe diameter
Dh � hydraulic diameter
Dn � Dean number Dn=UmDh /��Dh /Rc

k � fluid consistency
L � length of the channel
m � stress growth exponent of the Papanastasiou

model
n � power law index
P � pressure
r � radial distance
R � radius of the pipe

Rc � mean curvature radius
Re � Reynolds number Re=UmDh /�

Reg � generalized Reynolds number
Rew � Reynolds number of the Bingham fluid defined

at the wall
u ,v ,w � velocity component in x, y, z directions

respectively
Uc � velocity of the plastic region �unshared area�

Um � mean velocity
x ,y ,z � coordinate system

Greek Symbols
� � fluid density

 � fluid viscosity


w � fluid viscosity at the wall

s � solid viscosity
� � kinematic viscosity
� � angular position
	 � Bercovier and Engelman model parameter
�̇ � shear tensor

�̇c � critical shear
� � stress tensor

�c � yield stress
�w � wall stress
� � dimensionless geometrical parameter

�0 � plug flow region ��c /�w�
�cc � yield influence parameter in circular pipe
�pp � yield influence parameter in parallel plates

channels
� � loss
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Taylor-Couette Instabilities in
Flows of Newtonian and
Power-Law Liquids in the
Presence of Partial Annulus
Obstruction
The flow inside a horizontal annulus due to the inner cylinder rotation is studied. The
bottom of the annular space is partially blocked by a plate parallel to the axis of rotation,
thereby destroying the circumferential symmetry of the annular space geometry. This flow
configuration is encountered in the drilling process of horizontal petroleum wells, where
a bed of cuttings is deposited at the bottom part of the annulus. The velocity field for this
flow was obtained both numerically and experimentally. In the numerical work, the equa-
tions which govern the three-dimensional, laminar flow of both Newtonian and power-
law liquids were solved via a finite-volume technique. In the experimental research, the
instantaneous and time-averaged flow fields over two-dimensional meridional sections of
the annular space were measured employing the particle image velocimetry (PIV) tech-
nique, also both for Newtonian and power-law liquids. Attention was focused on the
determination of the onset of secondary flow in the form of distorted Taylor vortices. The
results showed that the critical rotational Reynolds number is directly influenced by the
degree of obstruction of the flow. The influence of the obstruction is more perceptible for
Newtonian than for non-Newtonian liquids. The more severe is the obstruction, the larger
is the critical Taylor number. The height of the obstruction also controls the width of the
vortices. The calculated steady-state axial velocity profiles agreed well with the corre-
sponding measurements. Transition values of the rotational Reynolds number are also
well predicted by the computations. However, the measured and predicted values for the
vortex size do not agree as well. Transverse flow maps revealed a complex interaction
between the Taylor vortices and the zones of recirculating flow, for moderate to high
degrees of flow obstruction. �DOI: 10.1115/1.2136930�

1 Introduction
The flow field generated in the annular region formed by two

concentric cylinders due to the rotation of the inner cylinder is a
classical problem in fluid mechanics that has received consider-
able attention in the literature. The flow instabilities generated in
the annular space have been investigated since the pioneer work
of Taylor �1�. Since then, several other researchers addressed dif-
ferent features of this super critical Couette flow �2,3�. Andereck
et al. �4� characterized the supercritical flow regimes in circular
Couette flow, while Wereley and Lueptow �5� employed whole-
field techniques to measure the flow field in a meridional plane.

In addition to its importance to the fundamentals of fluid me-
chanics, supercritical circular Couette flow encounters several im-
portant practical applications. The present research was motivated
by the drilling of horizontal oil and gas wells. Horizontal wells
have been extensively used in recent years by the petroleum in-
dustry due to its higher efficiency in oil recovery. A challenge
posed to the horizontal drilling technique is the ability to effi-
ciently remove the drilling cuttings that tend to settle and accu-
mulate at the lower part of the annular gap between the rotating
column and the formation. The design of a successful drilling
operation relies on simulations of the flow capability of suspend-
ing and removing the cuttings. One of the key inputs to such

simulations is the axial velocity profile in the annular space. Of-
ten, due to the lack of information about the actual flow, crude
approximations for the velocity profile—such as plug flow—are
employed. There are a number of articles in the petroleum litera-
ture that deal with the influence of shaft rotation on the flow field
and on the cleaning efficiency of horizontal wells �e.g., �6–8��.

The present paper reports on the efforts of an ongoing project
aimed at studying the flow field and cleaning characteristics of
horizontal wells. In the first phase presented here, a simplified
model of the problem is studied in detail. The model consists of a
horizontal annular space formed by an outer fixed cylinder and an
inner rotating cylinder of large length-to-gap ratio. The annular
space is limited axially by end walls. No axial flow is present. The
bed of cuttings is mimicked by an impermeable horizontal plate
that partially obstructs the annular gap, as represented schemati-
cally in Fig. 1.

Four distinct regimes were reported �4� for the flow in annular
spaces due to rotation of the inner cylinder, which were observed
as the angular velocity is increased. These are, in order of increas-
ing angular velocity, �i� the classical Couette flow �purely tangen-
tial flow�, �ii� the Taylor-vortex flow, �iii� the wavy-vortex flow,
and �iv� the modulated-vortex flow. An additional regime was
identified and reported by Lim et al. �9�, occurring between
Taylor- and wavy-vortex flow. It was named secondary Taylor-
vortex flow. These five regimes are characterized by a few param-
eters, namely, a rotational Reynolds number, the ratio of inner to
outer annulus radius, and, for some regimes, the angular accelera-
tion imposed on the inner cylinder as it approaches the desired
rate of rotation.
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The effect of the annular space radius ratio on the Taylor-
Couette stability was investigated mathematically �3� for concen-
tric, infinite-length cylinders. They have shown that the critical
rotational Reynolds number that characterizes the onset of Taylor-
vortex flow increases with the radius ratio, for radius ratios larger
than 0.45.

It has been observed �4,10� that the transition from purely tan-
gential to Taylor-vortex flow depends also on the acceleration
ramp imposed on the inner cylinder. A hysteresis curve for the
critical rotational Reynolds number was obtained by approaching
the transition angular velocity both from below and from above
�10�. The hysteresis effect was shown to be negligible if the di-
mensionless acceleration is smaller than 10. This dimensionless
acceleration is defined as

a* = � d

L
�d Re

dt* �1�

where Re���rid /�c is the rotational Reynolds number, t*

= t�c /�L2 is a dimensionless time, d=ro−ri is the gap, ri and ro
are respectively the inner and outer cylinder radii, L is the total
axial length, and � is the mass density. The characteristic viscosity
�c is defined as �c����̇c�, where �̇c��ri /d is the characteristic
shear rate �see Eq. �4� below�.

A visualization technique was employed to study the influence
of the length-to-gap ratio, L /d, on the Taylor-vortex and wavy-
vortex instabilities �2�. It was found that the onset of Taylor-
vortex instability is not affected by L /d when this parameter is
larger than 20, while it should be larger than 50 in the case of the
wavy-vortex transition.

The effect of the eccentricity between the inner and outer cyl-
inders on the Taylor vortex instability was investigated �11,12�.
Both articles report that the value of the critical Reynolds number
that characterizes the onset of Taylor-vortex instability increases
with eccentricity.

The objective of the present work is to determine the influence
of the partial obstruction on the flow structure within the gap for
low rotational Reynolds number values, both for Newtonian and
power-law liquids. To this end, a combined experimental and nu-
merical program was conducted where instantaneous, whole-field
velocity measurements and three-dimensional computer simula-
tions were employed to help characterize the flow field.

2 Governing Equations and Numerical Solution
The problem investigated is the flow in the gap between two

horizontal, concentric cylinders forming an annular space with
inner radius ri and an outer radius ro, defining the annular space
which gap is d=ro−ri. The outer cylinder is fixed, while the inner
cylinder rotates with an angular velocity �. A horizontal plate is
placed at the lower part of the annular space, at a distance h from
the external radius. The axial length of the annular space, L, is the
same as that of the plate. A view of the cross section of the
partially obstructed geometry studied is shown in Fig. 1. To allow
comparisons between numerical and experimental results, the nu-
merical solutions were obtained for a finite-length annular space,
delimited axially by two vertical end walls.

The steady isothermal flow of an incompressible, generalized
Newtonian liquid is governed by the following mass conservation
and momentum equations:

� · u = 0 �2�

�u · �u = − �p + � · ���̇� �3�

In the above equations, u is the velocity vector, p is the liquid
pressure, � and � are, respectively, the mass density and viscosity
function of the generalized Newtonian liquid, and �̇��u+�uT is
the rate-of-deformation tensor.

The presence of the horizontal plate in the annular space de-
stroys the circumferential symmetry, and therefore a three-
dimensional flow field is expected. The dimensionless parameters
that govern the problem are the rotational Reynolds number based
on the inner cylinder angular velocity, Re���rid /�c, the inner-
to-outer cylinder radius ratio, ri /ro, the length-to-gap ratio, L /d,
and the dimensionless obstruction height, �=h /d.

At the inner and outer cylinder walls, the boundary conditions
employed were the no-slip/impermeability conditions �u=0�. At
the vertical walls that delimit axially the horizontal annular space,
two types of boundary conditions were tested. The first kind of
boundary condition tested was no-slip/impermeability �u=0�.
This condition models the experimental test section constructed. A
second type of boundary condition was used as an attempt to
simulate the flow in infinitely long annular spaces. To this end, the
boundary condition suggested by Coronado-Matutti et al. �13� was
implemented, namely, the computational domain is extended and
no-slip/impermeability boundary conditions are imposed at the
new, farther-apart solid surfaces. At the surface of the inner cyl-
inder that belongs to the extended computational domain the an-
gular velocity is set to zero. This approach provides essentially an
additional cavity of fluid that allows freedom to accommodate the
vortical flow in the annular space. Coronado-Matutti et al. �13�
reported good results employing this type of boundary condition.

In order to try to reduce the computer effort, some numerical
solutions were performed employing a symmetry boundary con-
dition at the annular space mid-length. The results obtained with
the three boundary conditions described were tested against the
experimental results. In order to facilitate future reference in this
text, these boundary conditions were labeled as:

Type (a) boundary conditions: symmetry at mid-length and
extended domain at vertical end plane;

Type (b) boundary conditions: symmetry at mid-length and
no-slip/impermeability condition at vertical end wall;

Type (c) boundary conditions: no-slip/impermeability condi-
tion at both vertical end walls �computation of the full domain�.

The conservation equations together with the appropriate
boundary condition were solved numerically employing the soft-
ware Fluent version 6.12. This code employs a finite-volume-
based discretization of the governing equations, using a power-
law interpolation scheme. The pressure-velocity coupling
employed was the SIMPLE algorithm �14�. The resulting alge-
braic system was solved using a multi-grid procedure. Due to
memory limitations, axis-symmetric solutions only �no obstruc-
tion� were obtained for type �c� boundary conditions. Extensive
mesh-sensitivity tests were conducted in order to define an appro-
priate three-dimensional mesh for solving the problem. Grid inde-
pendence was obtained for a uniform mesh of 25�160�400 con-
trol volumes, deployed, respectively, in the radial, circumferential,
and axial directions. For the axis-symmetric cases, grid-
independent solutions were achieved with a 40�800 uniform
mesh. All the physical dimensions of the domain of computation
were chosen to be identical to the ones found in the experimental
apparatus, to allow comparisons between predictions and mea-
surements. These dimensions are given in Sec. 4.

Fig. 1 Cross section of the partially obstructed annular space.
Inner cylinder rotates counter-clockwise.
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3 The Viscosity Function
For the range of angular velocities found in drilling operations,

the shear rate is typically large enough to render unimportant the
zero-shear-rate plateau region which is often observed in the vis-
cosity function of drilling fluids. Therefore, to consider the shear-
thinning behavior of these materials in this flow it suffices to
employ the simplest non-Newtonian viscosity function available,
namely, the Ostwald-de-Waele or power-law viscosity function:

���̇� = K�̇n−1 �4�

where K is the consistency index, �̇��tr�̇2 /2 is the deformation
rate and n is the power-law index.

The rheological parameter values pertaining to four non-
Newtonian liquids used in the experiments, namely, K and n, were
obtained via least-squares fittings to rheological data, and were
employed in the numerical simulations.

These parameters are given below:

K�Pa sn� n
0.221 0.704
0.567 0.578
1.26 0.406
2.52 0.309

For the Newtonian experiments, the liquid employed was a
glycerol/water mixture with a constant viscosity of approximately
0.36 Pa s.

4 Experimental Setup
The experimental setup to be described next was designed and

constructed with the objective of allowing the assessment of the
influence of the cylinder-to-plate gap on the flow structure inside
the annular region, and on the critical rotational Reynolds number
that characterizes the transition to the Taylor-vortex flow regime.
A more complete description is available in Loureiro �15�.

4.1 Test Section. Figure 2 is a schematic representation of the
test section employed in the experiments. Capital letters in the
figures mark some components of the test section to facilitate the
description in the text. A horizontal aluminum hollow shaft �A�
was mounted concentrically with a 5 mm thick Plexiglas cylinder
�B�. The outer diameter of the shaft was 2ri=125 mm, while the
inner diameter of the Plexiglas cylinder was equal to 2ro
=220 mm, thereby forming an annular gap of d=47.5 mm and a
radius ratio of ri /ro=0.57. The inner aluminum shaft was ma-
chined from a 5 mm thick extruded pipe. One aluminum cap with
a protruding 25 mm diameter shaft was installed at each end of

the hollow aluminum shaft. During the machining operation, the
aluminum shaft was supported on the lathe by its two end shafts,
in order to guarantee a perfect rotation of the outer surface of the
aluminum shaft around its centerline. At the end of the machining
operation, a dial gauge was used to verify that the aluminum shaft
rotated with an eccentricity smaller than 0.1 mm. The two end
shafts were mounted on ball bearings �D� fixed on Plexiglas discs
�C�. Each disc was equipped with an O-ring and fixed to one of
the end planes of the Plexiglas cylinder, thereby sealing the work-
ing liquid in the annular space. The length of the annular space
formed was equal to L=2475 mm, which produced a length-to-
gap ratio of L /d=52.1.

An electrical motor equipped with a programmable speed con-
trol was used to rotate the aluminum shaft. Two pulleys connected
with a synchronizing rubber belt were used to drive the aluminum
shaft, providing a transmission ration of 7:1. The motor speed
control and the low transmission ratio allowed for a smooth con-
trol of the shaft angular speed and speed ramp. As will be noted
shortly, the ability to control the shaft angular acceleration is criti-
cal for the success of the flow transition experiments. An encoder
�E� was installed at the tip of the aluminum shaft to monitor its
angular motion. The encoder signal was registered by a computer
that calculated angular displacement, angular velocity, and accel-
eration of the shaft. The signal from the encoder was also used to
trigger the system used for measuring the instantaneous flow field.

A progressive cavity pump �F� was installed to aid in the prepa-
ration of the experiments. The pump was used to fill the annular
cavity with the working liquid. In this operation, the working
liquid was pumped from a reservoir �G� to the interior of the
annular space, by opening valves �H�, �I�, and �J� and closing
valves �L� and �K�. Air was purged from the annular space using
valve �M�. The Newtonian working liquid was formed by a mix-
ture of glycerol, water and a few grams of small, silver-coated,
hollow glass spheres used as tracers for the laser technique em-
ployed. For non-Newtonian liquids, a mixture of glycerol, car-
bopol solution at 0.15%, and the same spheres were used. The
glycerol was used to reduce the carbopol turbidity and control the
power-law index. The pump was also used to circulate the work-
ing liquid prior to the measurements in order to keep the tracer
particles in suspension. The pump was not used during the
experiments.

A Plexiglas box �N� was mounted around the Plexiglas tube
with the objective of minimizing the distortions of the image in
the annular space due to the curved wall. The box was filled with
the working liquid, without the small hollow glass spheres, which
provided a good match to the index of refraction of Plexiglas. Two
adjacent box walls were made of borosilicate glass, while the
other two were made of Plexiglas. The laser sheet of the velocity

Fig. 2 Schematic view of the experimental setup
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measuring system entered through the vertical glass wall, while
the images of the illuminated tracer particles were captured
through the second, horizontal, lower glass wall.

The focus of the work was on the effect on the flow field within
the annular gap caused by the presence of a partial obstruction
placed within the gap. A set of five, 4 mm thick Plexiglas plates
was carefully machined to serve as the obstruction in the annular
gap. The length of each plate matched the length of the annular
gap. The width of each plate was calculated so as to produce the
cylinder-to-plate spacing required for each particular experiment.
The plate was introduced in the annular space by removing one of
the Plexiglas end caps that sealed the annular space. The edges of
the plates were beveled at an angle that matched the internal cur-
vature of the Plexiglas cylinder. The horizontal plates were fixed
in position by a series of bolts that passed through the external
surface of the Plexiglas cylinder and matched tapped holes in the
inferior surface of the plate.

The complete assembly formed by the inner aluminum shaft,
Plexiglas outer cylinder with horizontal plate �when present�, and
visualization box was mounted on a solid steel frame that was
fixed to the laboratory floor using four antivibration bases. The
assembly was fixed on the steel frame by mounting the Plexiglas
cylinder on four semi-circular Plexiglas bases. Braces fixed the
Plexiglas cylinder on the bases. When the braces were not yet
tightened, it was possible to rotate the Plexiglas cylinder by hand.
The rotation of the cylinder was only necessary in the experiments
that used the horizontal plate in the annular gap. In these experi-
ments, the circumferential symmetry of the flow in the annular
space is destroyed and there is a need to measure flow fields in the
r-z plane for different circumferential positions �. This was
achieved by keeping the illuminating laser sheet horizontal and
positioning the Plexiglas cylinder at different circumferential co-
ordinates. It should be mentioned that the visualization box was
designed so that the Plexiglas cylinder could be circumferentially
moved, while keeping the box in a fixed position with its vertical
glass window orthogonal to the incident laser sheet.

4.2 Velocity Measurements. Both time-resolved and average
flow fields in the annular gap were obtained via the particle image
velocimetry technique �PIV� �16�. In this technique, a pulsed laser
sheet illuminates small tracer particles previously distributed in
the liquid. A digital camera, mounted orthogonally to the laser
sheet, captures the particle positions at two consecutive time in-
stants. An image-processing algorithm calculates the displace-
ments of small groups of particles in the image which, together
with the time interval of image capture, produces the desired in-

stantaneous flow field.
In the present study the PIV system used was manufactured by

TSI Inc. The system employed a New Wave Research, 120 mJ per
pulse, double-cavity laser that is able to fire double pulses at
15 Hz. The minimum time interval between pulses can be ad-
justed to a few nanoseconds, much less than necessary for the
present low-speed experiments. Lenses attached to the laser unit
transformed the beam into a divergent laser sheet with an approxi-
mate thickness at the beam waist of 0.3 mm. The tracer particles
used were silver-coated, hollow glass spheres with mean diameter
of 13 �m and density of 1.6 g/cm3; even though the working
liquid density was approximately equal to 1.2 g/cm3, a very small
number of particles was observed to settle over a 24 h period. The
camera �O� used to capture the particle images �TSI model PIV-
CAM 10–30� had 1000�1000 pixel resolution, working at
30 frames per second. This camera was mounted on a xyz coordi-
nate table �P�. Synchronization between laser firing and image
capture was accomplished by a TSI model 60030 synchronizer. In
the experiments, instantaneous flow fields were captured as the
aluminum shaft was accelerated from rest up to the final angular
speed desired for a particular experiment. These measurements
were accomplished by using the signal from the shaft encoder as a
trigger for the TSI synchronizer.

Two types of velocity measurements were obtained: flow fields
in the r-z plane and in the r-� plane. In the former case, the light
sheet was placed horizontally and the camera vertically. The tracer
particles in this case crossed the light sheet with elevated circum-

Fig. 3 Influence of dimensionless acceleration on critical Rey-
nolds number for a Newtonian liquid. Experimental results.

Fig. 4 „a… Axial-to-tangent velocity norm ratio as a function of
the rotational Reynolds number. „b… Derivative of the norm ratio
as a function of the rotational Reynolds number „Newtonian
liquid, h /d=0.5….
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ferential velocity, especially in the regions close to the aluminum
shaft surface where the velocity is highest. The time interval be-
tween laser pulses was adjusted so as to guarantee that the par-
ticles did not leave the light sheet during the two pulses and still
display a reasonable displacement to allow an accurate
measurement.

A cross-correlation-based algorithm was employed to determine
the particle displacement field. The algorithm was part of the soft-
ware Insight version 5.0 developed by TSI Inc. Interrogation win-
dows of 64�64 pixels with a 32 pixel overlap were used in the
calculations. An image calibration procedure indicated that the
chosen interrogation window corresponded to a 3�3 mm2 win-
dow in the actual flow. Typically, 50�30 �axial� radial direction�
velocity vectors were measured in each plane. The quality of the
images obtained was such that the interrogation windows gener-
ated only valid vectors, so no vector interpolation scheme was
employed. Average velocity fields were obtained by averaging
over 100 measured vector fields. This number was limited by the
memory of the available computer. Calibrating experiments pre-
viously conducted with a solid body rotation apparatus indicated
that the experimental accuracy for the PIV system employed is of
the order of ±1% �17�.

5 Results and Discussion
In the following subsections we present and discuss the experi-

mental and numerical results obtained.

5.1 Effect of Angular Acceleration on the Onset of Taylor-
Vortex Flow. Park et al. �10� demonstrated the effect of angular
acceleration on the critical value of the rotational Reynolds num-
ber. A series of experiments was carried out to determine the
relationship between angular acceleration and Taylor-vortex onset
for the annular region without the partial blockage. In these ex-
periments the aluminum shaft was started from rest and uniformly
accelerated to reach a steady-state condition. The shaft encoder
recorded the rotation history and sent a signal to trigger the PIV
system at every three shaft revolutions. The r-z velocity fields
recorded were carefully examinated to detect the onset of radial or
axial velocities, which were the indication of the onset of Taylor
vortices.

Figure 3 presents the results obtained for a Newtonian liquid. In
the figure, the critical rotational Reynolds number is plotted as a
function of the dimensionless acceleration. The influence of the
acceleration on the value of the critical Reynolds number is
clearly noted. For the lowest value of the acceleration tested, the
value of the critical Reynolds number slightly over 70 agrees with
data from the literature available for ri /ro=0.55 �3�, which is

close to the one of the present study �ri /ro=0.57�. All the experi-
ments reported in the present paper were conducted with the mini-
mum possible dimensionless acceleration value allowed by the
experimental setup, which was around 10. This value is within the
maximum limit suggested by Park et al. �10� to minimize hyster-
esis effects on Taylor-vortex transition values.

5.2 Taylor-Vortex Onset for Partially Obstructed Annular
Space. The onset of Taylor-vortex flow in the partially obstructed
annular space was investigated both numerically and experimen-
tally. In the experimental tests, the same methodology described
in the previous section was employed for determining the critical
rotational Reynolds number values.

In the numerical investigations, the three-dimensional, steady-
state flow field was obtained for increasing values of the rotational
Reynolds number until the onset of Taylor-vortex flow was de-
tected. The criterion employed for detecting the onset of Taylor-
vortex flow was that suggested by Coronado-Matutti �13�. Ac-
cording to this criterion, the ratio of a given norm of the axial
velocity field �vz� to the same norm of the circumferential velocity
field �v�� is calculated for each value of the rotational Reynolds
number. This ratio is given by

Fig. 5 Critical Reynolds number as a function of the obstruc-
tion height Fig. 6 Critical Reynolds number at the minimum gap as a

function of the radius ratio at the minimum gap

Fig. 7 Vortex length as a function of obstruction height. New-
tonian liquid.
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In the three-dimensional calculations, the summations in Eq. �5�
were evaluated only over the node points contained in the meridi-
onal vertical planes �0 and 180 deg�. For a flow configuration
below the critical Reynolds number value, it is expected that the
ratio of velocity norms be zero, indicating the absence of the axial
velocity component. As the Taylor-vortex structure begins to de-
velop, the axial component of velocity appears and the norm ratio
increases.

Figure 4�a� presents the results obtained from the numerical
simulations conducted with the type �a� boundary conditions. In
the figure, the ratio of norms is plotted as a function of the rota-
tional Reynolds number for an obstruction of h /d=0.5. The de-
parture from zero can be detected for a Reynolds number around
75. A more accurate detection of the critical Reynolds number can
be obtained if the derivative of the function is calculated and
plotted in terms of the Reynolds number. This is presented in Fig.
4�b�. The peak in the derivative of the norm function with respect
to the Reynolds number clearly determines the transition point.
This methodology was adopted in the present study after being
tested for h /d=0, for which the obtained value for the critical
rotational Reynolds number was in close agreement with the al-
ready mentioned result available in the literature �Rec�70 �3��.

The effect of the flow obstruction on the critical Reynolds num-
ber is now examined. Figure 5 presents both numerical and ex-

Fig. 8 Axial velocity profiles for Taylor-vortex regime. Unob-
structed annulus and Newtonian liquid. „a… Re=104. „b… Re
=126.

Fig. 9 Axial velocity profiles for Taylor-vortex regime. Unob-
structed annulus. n=0.406. Re¶1.8Rec.

Fig. 10 Velocity profile in the meridional planes 0 and 180 deg
for Taylor-vortex regime. Newtonian liquid. Re¶1.2Rec, h /d
=0.5.

Fig. 11 Velocity profile in the meridional plane 90 deg for
Taylor-vortex regime. Newtonian liquid. Re=109, h /d=0.5.
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perimental results obtained for the critical rotational Reynolds
number as a function of the dimensionless obstruction height, h /d,
both for Newtonian and non-Newtonian power-law liquids. Ac-
cording to the definition of h �Fig. 1�, when h /d=1 the plate
touches the inner cylinder, while h /d=0 corresponds to the ab-
sence of obstruction.

Figure 5 reveals that the obstruction of the annular space delays
the transition to the Taylor-vortex flow regime. Indeed, the critical
Reynolds number value for the free annular space of roughly 70
increases up to 145 for the maximum obstruction value, namely
h /d=0.75, and Newtonian liquid. This trend is consistent with the
observations for increasing radius ratio values �3� and also for
increasing eccentricity �11,12�. Narrower gaps imply larger vis-
cous forces, which render the inertial forces relatively less impor-
tant and hence a stabilizing effect is observed. These results can
be of significant importance for the application that motivated the
present work. Indeed, the rate of particle removal of a horizontal
bed in an annular space can be directly influenced by the presence
and intensity of Taylor vortices.

Another result observed in Fig. 5 is the effect of the power-law
index on the transition to the Taylor-vortex flow regime. The more
shear-thinning is the liquid, the lower is the critical rotational
Reynolds number. This behavior is in agreement with the findings
of Ashrafi and Khayat �18�.

Figure 5 also illustrates the remarkable agreement between ex-
periments and computation for both the Newtonian and the non-
Newtonian liquids. Indeed, the average deviation observed be-
tween experiments and computation is of the order of 0.9%, the
maximum deviation being 1.83%. The average absolute experi-
mental uncertainties estimated for the Reynolds number were of
the order of 0.5.

It is interesting to replot the information given in Fig. 5 in a
different form. We can define a Reynolds number evaluated at the
minimum gap as follows:

Re* �
��ri�d − h�

���̇2�
�6�

where �̇2��ri / �d−h� is a representative shear rate at the mini-
mum gap. In Fig. 6 we plot the critical value of Re*, namely Rec

*,
as a function of r2

*�ri / �ro−h�, which is the radius ratio at the
minimum gap. We can observe that Rec

* decreases with r2
* which

yields that, since Rec increases with ri /ro for the tangential flow in
the free annular space �3�, then the tangential flow in the partially
obstructed annular space with a given obstruction r2

* is less stable

than the tangential flow in the free annular space of radius ratio
equal to r2

*.

5.3 Taylor-Vortex Characterization: Vortex Length. The
influence of the obstruction on the length of the Taylor vortices
was investigated both numerically and experimentally. In both
cases, the methodologies employed to determine the vortex length
were similar. Along a line of constant radial and tangential coor-
dinates close to the inner rotating cylinder, the vortex length was
taken as the distance between two consecutive axial positions
where the axial velocity component changed direction. This pro-
cedure was conducted for different values of the flow obstruction,
given by h /d.

Figure 7 presents Taylor-vortex length results for the Newton-
ian liquid. The dimensionless length of the vortex 
v /2d �
v is the
axial length of each pair of counter-rotating vortices� is presented
as a function of the obstruction parameter h /d. The experimental
results are represented in the figure by circles, while numerical
results are represented by �’s and triangles. The two numerical
solutions differ on the boundary conditions imposed at the r-� end
planes that limit axially the computation domain.

First it is observed that for unblocked annuli 
v /2d�1. This is
a well-known result, which holds for a wide range of radius ratio
values. Therefore, Fig. 7 illustrates that, although the obstruction
reduces the vortex length, the vortices for a given obstruction h /d
are larger than those pertaining to an unblocked annulus with gap
equal to d−h.

Fig. 12 Velocity profile in the meridional plane 270 deg for
Taylor-vortex regime. Newtonian liquid. Re=109, h /d=0.5.

Fig. 13 Velocity profile in the meridional planes „a… 0 and
180 deg and „b… 90 and 270 deg for Taylor-vortex regime. n
=0.704. Re=69.5¶1.03Rec, h /d=0.25.
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It is also interesting to verify in Fig. 7 that, although the agree-
ment between numerical and experimental results for the critical
Reynolds number presented in Fig. 5 was excellent, a significant
discrepancy is observed for the Taylor vortex length. For h /d
equal to 0.375, 0.500, and 0.750, the agreement is very good for
the type �b� boundary condition. The same cannot be said for h /d
equal to 0, 0.250, and 0.625, where a considerable discrepancy is

observed.
These discrepancies were found to be related to the boundary

conditions employed. To further investigate the influence of the
boundary conditions on the vortex length, numerical simulations
were obtained for the computational domain encompassing the
whole axial length of the annular space. The boundary conditions
imposed in this case were no-slip/impermeability at the solid ver-
tical end caps that limit the annular space. These are labeled in
Fig. 7 as boundary conditions of type �c�. The computational time
and memory requirements for a solution of this type would be
significantly larger than those required for a solution that employs
boundary conditions of type �b� where just half of the physical
domain is solved. For this reason, the runs for the type �c� bound-
ary condition were performed for the h /d=0 case only, which
could be solved by exploiting axial symmetry, thus reducing the
computational requirements to a feasible level.

As shown in Fig. 7, the type �c� numerical result �at h /d=0�
matches perfectly with the corresponding experimental result,
namely, a Taylor vortex length of approximately 47.5 mm, which
is also the gap size, as expected. On the other hand, the value
obtained for the type �b� condition is 46 mm. Although this dif-
ference might not seem significant, it should be mentioned that for
type �c� boundary condition 52 vortices were obtained in the an-
nular space, while 54 �27�2� vortices were obtained when type
�b� boundary condition was employed. These results show that the
symmetry condition at mid-length may lead to unphysical predic-
tions, since type �a� and type �b� boundary conditions yielded the
same numerical results.

From Fig. 7 it is also seen that the length of the vortices de-
creases as h /d is increased. Inspection at other circumferential
positions �as obtained both numerically and experimentally�
showed that the vortex length is constant all around the annular
space. Experimental observations were made at meridional planes
located at 0, 90, 180 and 270 deg, as marked in Fig. 1. In order to
conduct these measurements, the Plexiglas cylinder was manually
rotated relative to the horizontal laser light sheet, as described in
the previous section.

5.4 Taylor-Vortex Characterization: Axial Velocity Profile.
Experimentally and numerically obtained axial velocity profiles
are now presented in dimensionless form �vz

*=vz /�ri, r1
*=r /ro�.

The axial velocity profiles were obtained at an axial coordinate
passing through the eye of the vortex, located approximately at
the mid-length of the annular space.

Figure 8 presents the axial velocity profiles for the annular
space without obstruction for a Newtonian liquid. Results for two
rotational Reynolds number values are presented: 104 and 126.
These values correspond respectively to 48% and 80% above the
transition value, but below the values for the second transition to
the wavy-vortex regime. Two sets of representative experimental

Fig. 14 Velocity profile in the meridional planes „a… 0 and
180 deg and „b… 90 and 270 deg for Taylor-vortex regime. n
=0.704. Re=80¶1.03Rec, h /d=0.5.

Fig. 15 Velocity distribution in the r-z plane and vortex structure. Newtonian liquid. Re=85.6,
h /d=0.0, �=0.
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results are presented in the figure, labeled as “group A” and
“group B” velocity profiles in Figs. 8�a� and 8�b�. These two sets
of results pertain to the same nominal initial and boundary condi-
tions, but are completely different. They were carefully and ex-
tensively repeated using the same working liquid at a fixed tem-
perature. The imposed acceleration ramp was the same for all
experiments, namely a*=10.2.

Since the camera that registered the particle images was kept at
the same axial position in all experiments, the two types of veloc-
ity profiles measured are an indication of the existence of two
stable solutions for the flow. An obvious observation in Fig. 8 is
that group A and group B profiles display opposite signs, indicat-
ing that a lateral shift in the vortices had occurred. Although it is
not clear in the figure, group A and group B profiles are not
symmetric. Group A profiles display maximum axial velocities
that are somewhat higher than those measured for group B pro-
files. This might be an indication that the two solutions observed
differ in the number and intensity of the vortices.

Figure 8 also displays numerical predictions of the axial veloc-
ity profiles. The boundary conditions employed in the calculations
were of type �c�, which means that the whole annular space was
used as the computation domain with no-slip/impermeability con-
ditions at the end walls. The calculations were obtained by assum-
ing axis-symmetric flow. The results show that the numerically
obtained velocity profiles agree well with group B profiles for the
two values of the Reynolds number investigated.

Figure 9 presents axial velocity profiles for a non-Newtonian
power-law liquid with a power-law index of n=0.406. The non-
Newtonian liquid is turbid and the image processing becomes
more difficult than for the Newtonian transparent liquid, espe-
cially in the vicinities of the annulus walls. This is the reason for
the lack of experimental data in Fig. 9 pertaining to these flow
regions. For this power-law index, the Taylor vortex onset was
observed to occur at Re=65.6.

Figure 10 shows axial velocity profiles for a Newtonian liquid
and an obstruction of h /d=0.5, for a rotational Reynolds number
value of 109, which is about 22% above the transition value. The
profiles are for an axial coordinate passing through the eye of the
vortex. The dimensionless acceleration imposed on the shaft to
reach the steady-state condition was the same as in the free annu-
lar space, i.e., a� =10.2±0.1. Figure 10 shows velocity profiles
measured at meridional planes positioned both at 0 and 180 deg.
Although the presence of the obstruction flattens the vortex radi-
ally, the profiles at the two meridional planes have qualitatively
the same shape. At the 90 and 270 deg planes the axial velocity
profiles are quite similar, although the vortex intensity at the
90 deg plane is higher �Figs. 11 and 12�.

It can be seen in Figs. 10–12 that the same level of agreement
between numerical and experimental results obtained for the free
annular space case of Fig. 8 is achieved for the partially ob-

structed case, for the planes positioned at 90 and 270 deg. The
boundary conditions employed in these 3-D calculations were of
type �a�.

Finally, Figs. 13 and 14 show axial velocity profiles for the case
of the non-Newtonian liquid with n=0.704. Figure 13 pertains to
an obstruction of h /d=0.25, while Fig. 14 shows the profiles for
h /d=0.5. These figures illustrate that the qualitative trends dis-
cussed above for Newtonian axial velocity profiles are also ob-
served for power-law liquids.

5.5 Taylor-Vortex Characterization: Longitudinal Velocity
Fields. The Taylor-vortex structure in the annular space is now
discussed. Figure 15 shows the velocity distribution in the merid-
ian plane r-z for the free annular space, i.e., h /d=0. At a given
axial position, the velocity magnitude in the neighborhood of the
inner cylinder is larger than in the vicinity of the outer cylinder.
This is also illustrated in Fig. 8. This occurs due to mass conser-
vation, as explained by Wereley and Lueptow �5�. Furthermore, at
a given streamline, the positive radial velocity component is larger
in magnitude than the negative one at the same radial position.
This behavior is consistent with mass conservation together with
the just-discussed axial velocity behavior.

Velocity distributions in the r-z plane for partially obstructed
annular spaces were also obtained, and they turn out to be rather
more complex than the ones observed for a free annular space.
Figure 16 shows the velocity distribution in the r-z plane for
h /d=0.75. First, it is observed that adjacent Taylor vortices turn in
opposite directions, as expected and independently of the presence
of an obstruction. In addition to the vortex recirculation in the r
-z plane, the liquid particles in a vortex also possess velocity in
the � direction, due to the tangential drag related to the rotation of
the inner cylinder. Moreover, due to the flow resistance caused by
the obstruction, this tangential velocity may be either in the same
direction of the inner cylinder motion or in the opposite direction.
This is also illustrated in Fig. 16, where it is indicated by the
symbol � that in region A, there is flow into the plane of the
picture, while the symbol � indicates that the liquid in region B
flows tangentially in the opposite direction. To further illustrate
the complexity of this flow field, a particle path is represented in

Fig. 16 Velocity distribution in the r-z plane and vortex struc-
ture. Newtonian liquid. Re=149 h /d=0.75, �=0.

Fig. 17 Particle pathline as given by the numerical solution for
a Newtonian liquid. h /d=0.75, Re=149.
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Fig. 17. We start drawing the pathline at point 1. Point 2 corre-
sponds to the first change in direction, when the particle leaves
region A and enters region B �see Fig. 16�. At point 3 the particle
changes again its direction, due to the presence of the partial
obstruction.

5.6 Taylor-Vortex Characterization: Transverse Velocity
Fields. Velocity distributions in the cross-section plane �r-� plane�
obtained from 3-D numerical solutions for a Newtonian liquid are
presented in Fig. 18. The case chosen to illustrate the complex
flow pattern induced by the presence of the horizontal plate in the
annular gap is characterized by a Reynolds number value of 149
and an obstruction such that h /d=0.75. This Reynolds number
value is above the Taylor-vortex transition value, but below the
wavy-vortex transition value. Figure 18 shows the lower half of
the annular space, between 90 and 270 deg. Because the inner
cylinder rotates counter-clockwise, the graphs on the left pertain
to the portion of the flow upstream of the obstruction, whereas the
graphs on the right show the velocity distributions downstream of
the obstruction. In all graphs, the x axes run along the plate, while
the y coordinate is zero at the horizontal plane containing the
cylinder axis, and increases downwards. The insets in the figures
indicate the axial position relative to the pair of counter-rotating

Taylor vortices where the r-� velocity fields are shown. The vor-
tex pairs in the inset are drawn at the 180 deg position, i.e., at the
lower part of the annular space. The parallel lines that bound the
vortex pair in the inset represent the inner cylinder wall �I.C.� and
the plate wall �wall�. According to this representation, Fig. 18�a�
represents the velocity distribution at the symmetry plane between
the vortices, while 18�b� gives the same information for the mid-
plane of a single vortex.

The velocity distribution presented in Fig. 18�a� shows clearly
the strong tangential flow passing through the narrow gap passage.
This strong flow is fed by the down wash of the vortex pair at the
symmetry line. Worth noting is the recirculation zone present both
upstream and downstream of the gap passage. The recirculation
zones are present in the two axial stations shown. Other results,
not shown in the present paper, revealed that the recirculation
zone disappears for larger passages, when h /d�0.5. For other
axial positions, the tangential flow is seen to be less intense.

It should be mentioned that the Taylor vortices completely oc-
cupy the annular gap space for all tangential positions. Therefore,
at the narrow gap passage by the obstruction, the vortices display
the smallest cross sectional area, which increases to a maximum

Fig. 18 Velocity distribution in the lower half of the cross section of the annular space „a… at the vortex-pair symmetry plane
and „b… at the vortex midplane „upstream at left and downstream at right…. Re=149, h /d=0.75. Counter-clockwise cylinder
rotation. Newtonian liquid.
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value 180 deg away. The interaction of the Taylor vortices with
the recirculating flow shown in Fig. 16 induces a rather complex
flow pattern, as shown in Fig. 17.

5.7 Taylor-Vortex Characterization: Wall Plate Shear
Stress. The shear stress distribution on the plate surface was ob-
tained numerically for the flow of a Newtonian liquid in two par-
tially obstructed annular spaces, namely h /d=0.5 and 0.75, as
shown respectively in Figs. 19 and 20, where the labels of the
iso-curves indicate the shear stress in Pascal, and X is a coordinate
along the plate and transversal to the axial �z or Z� direction. In
each situation, two Reynolds number values were investigated, to
illustrate the influence of the transition in the shear stress distri-
bution on the wall plate. The first Reynolds number value was
chosen to be 0.99Rec, so that the flow was purely tangential. The
second Reynolds number value was chosen to be 1.20Rec, there-

fore within the Taylor-vortex regime.
The change in wall plate shear stress distribution is striking

when the Taylor vortices appear, as a comparison between Figs.
19�a� and 19�b� illustrates for h /d=0.5. The shear stress values
pertaining to the Taylor-vortex regime are clearly larger, not only
due to the increase in Reynolds number. In addition, the wall
shear stress distribution changes dramatically due to the vortex
structure.

In order to assess the flow capability to displace drilling cut-
tings from the cuttings bed, it is interesting to compare the stress
values caused by the flow on the bed surface with the minimum
shear stress needed to displace the cuttings. In this connection, it
is useful to evaluate the percent of surface area subjected to shear
stresses above different levels. This information is given in in Fig.
19�c�. For example, this figure indicates that 30% of the total area

Fig. 19 Shear stress distribution on the plate surface. „a… Re=87.2=0.99Rec. „b…
Re=105.2=1.20Rec. „c… Complement of accumulated area „total area-accumulated
area…. h /d=0.5. Newtonian liquid.
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is subject to shear stresses above 14.0 Pa in the presence of Taylor
vortices, while only 23% is subject to shear stresses above the
same level for purely tangential flow.

The same analysis was performed for h /d=0.75, and the corre-
sponding results are shown in Fig. 20. It is clear that the shear
stresses for this case are larger than for the previous case. Figure
20�c� shows that approximately 25% of the total plate area for
h /d=0.75 is subjected to shear stresses above 27.0 Pa, which is
the upper-limit wall shear stress for h /d=0.50.

6 Concluding Remarks
The present paper presented a combined numerical and experi-

mental study of the flow characteristics of a horizontal circular
Couette flow with partial obstruction of the annular space. The
obstruction consisted of a horizontal plate positioned at the lower

part of the annular gap. The presence of the plate destroys the
axial symmetry of the problem and affects the transition from
purely tangential to Taylor-vortex flow.

The three-dimensional velocity field within the annular space
was determined by the numerical solution of the mass and mo-
mentum conservation equations for the isothermal steady flow of
Newtonian and power-law liquids. Instantaneous and time-
averaged velocity fields were determined experimentally by em-
ploying the particle image velocimetry technique, PIV.

The results obtained were in the form of critical values for the
rotational Reynolds number that characterizes the transition from
purely tangential flow to Taylor-vortex flow. Agreement between
experimentally obtained and numerically predicted critical Rey-
nolds numbers was excellent for all values of the cylinder-to-plate
values investigated. The results have shown that the flow obstruc-

Fig. 20 Shear stress distribution on the plate surface. „a… Re=145.3=0.99Rec. „b…
Re=175.6=1.20Rec. „c… Complement of accumulated area „total area-accumulated
area…. h /d=0.75. Newtonian liquid.
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tion delays the transition to Taylor-vortex flow, and that this delay
is smaller for non-Newtonian liquids. A significant sensitivity of
the critical Reynolds number to the acceleration imposed on the
inner rotating cylinder was verified, which confirmed previous
results available in the literature.

Excellent agreement was also found between computation and
experiments for the axial velocity profiles. The experiments, how-
ever, revealed two possible different stable configurations for the
axial velocity profiles in the annular space without obstruction.
The existence of these two configurations is related to a different
number of vortices accommodated within the annular space
length.

Although the agreement between computation and experiments
was considered excellent for the critical Reynolds number and
axial velocity profiles, for some values of the cylinder-to-plate gap
the prediction of vortex length presented discrepancies between
measured and predicted results. These discrepancies are also re-
lated to the different number of vortex pairs accommodated within
the annular gap. Different types of boundary conditions employed
in the simulations at the vertical end walls that seal the gap have
been shown to produce different numbers of counter-rotating pairs
of vortices.

Numerically obtained velocity fields in the cross-section, r-�
plane revealed the existence of a rather complex flow structure
composed of Taylor vortices and zones of recirculating flow, when
the flow passage between the cylinder and the horizontal plate is
limited. Further investigation is needed to clarify the detailed
structure of this flow.
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Calculation of the Die Entry Flow
of a Concentrated Polymer
Solution Using Micro-Macro
Simulations
A micro-macro simulation algorithm for the calculation of polymeric flow is developed
and implemented. The algorithm couples standard finite element techniques to compute
velocity and pressure fields with stochastic simulation techniques to compute polymer
stress from simulated polymer dynamics. The polymer stress is computed using a
microscopic-based rheological model that combines aspects of network and reptation
theory with aspects of continuum mechanics. The model dynamics include two Gaussian
stochastic processes, each of which is destroyed and regenerated according to a survival
time randomly generated from the material’s relaxation spectrum. The Eulerian form of
the evolution equations for the polymer configurations is spatially discretized using the
discontinuous Galerkin method. The algorithm is tested on benchmark contraction do-
mains for a polyisobutylene solution. In particular, the flow in the abrupt die entry
domain is simulated and the simulation results are compared to experimental data. The
results exhibit the correct qualitative behavior of the polymer and agree well with the
experimental data. �DOI: 10.1115/1.2136922�

1 Introduction
Two persistent challenges in polymeric fluid mechanics are the

development of accurate rheological models to describe the stress-
strain relationship in the fluid and the development of accurate
and efficient numerical techniques to solve the resulting governing
system of equations. Within the traditional framework of simula-
tions, the stress is calculated using a closed-form macroscopic
model. Unfortunately, these models, often in the form of differen-
tial or integral equations, fail to various degrees to describe real
polymer behavior. Improvements to these models are restricted
due to the lack of molecular insight into them. Therefore, the best
hope for improvement is to develop microscopic-based, or mo-
lecular, models since these models are naturally suited for the
inclusion of relevant polymer physics. These models include a
description of the polymer molecular dynamics, usually involving
the evolution of polymer configuration variables with associated
probability density functions, and an expression for the polymer
stress as a function of these dynamics.

In order for microscopic-based models to be useful in engineer-
ing applications, simulation techniques must be developed that are
capable of resolving the multiple levels of description. In 1992,
Laso and Öttinger �1� introduced the first such micro-macro algo-
rithm for polymeric flow. The strategy of their algorithm, widely
known as CONNFFESSIT �Calculation Of Non-Newtonian Flow: Fi-
nite Elements and Stochastic Simulation Techniques�, is to couple
traditional methods, such as finite element techniques, for the cal-
culation of velocity and pressure with stochastic simulation tech-
niques for the calculation of polymer stress from a microscopic-
based model. Polymer stress is computed by simulating the
dynamics of a large ensemble of the configuration variables and
taking an appropriate ensemble average of a function of these
variables.

Laso and Öttinger �1� tested the method in one-dimensional

flow for various molecular models: the Hookean dumbbell models
�upper convected Maxwell model and Oldroyd-B model�, and the
FENE and FENE-P models. Feigl et al. �2� were the first to extend
CONNFFESSIT to two-dimensional flow. This was done for a
Hookean dumbbell model. Subsequent studies include those of
Hua and Schieber �3� for a reptation model and Bell et al. �4�, who
used a spectral method, as opposed to a finite element method, for
the macro calculation. Each of these studies relied on a particle
tracking technique in which an ensemble of model molecules or
chains is tracked in the flow field along selected particle paths,
and the polymer stress in each element is determined by averaging
over all such paths passing through the element.

An improvement to the particle tracking scheme was introduced
by Hulsen et al. �5�, who replaced the individual polymer mol-
ecules or chains by an ensemble of configuration fields, which are
defined at every point of the flow domain. These configuration
fields, like polymer molecules, convect and deform in the flow
field and may be subjected to Brownian motion. With this descrip-
tion, the difficulties associated with particle or ensemble tracking
in the original CONNFFESSIT algorithm were avoided. It was also
observed that the configuration field approach led to a reduction in
the statistical error �6�. A further improvement to the micro-macro
simulation of reptation models was reported by Van Heel et al. �7�
who used deformation gradient fields instead of configuration
fields for these models.

An important advantage of CONNFFESSIT, and other micro-
macro algorithms, is the ability to calculate polymeric flow using
molecular models for which a closed-form constitutive equation is
not known. This means that the physics in a model does not need
to be sacrificed for tractability. Moreover, these simulations allow
one to study the relationship between the flow process, the flow-
induced structure in the fluid, the macroscopic rheological prop-
erties of the fluid, the flow stability, and the mechanical properties
of the finished product. More details on the state of the art in
micro-macro simulations can be found in the recent review given
by Keunings �8�.

The model considered in this study is a molecular-based model
introduced by Feigl and Öttinger �9�. This model combines as-
pects of microscopic models, specifically reptation and network
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models, with aspects of macroscopic models. Comparison of
model predictions to experimental data showed that the model
described well the material functions of a low-density-
polyethylene melt in shear and elongational flow. The goal of the
present paper is to develop a two-dimensional micro-macro simu-
lation algorithm incorporating this model and to test it in bench-
mark flow problems. The fluid considered is a well-characterized
polyisobutylene �PIB� solution �10,11�, and the flow domains are
the tapered and abrupt die entry domains.

The remainder of the paper is organized as follows. In Sec. 2,
the general dynamics and stress tensor of the microscopic-based
model are described. A particular form of the model is constructed
for the PIB solution, and some of the model’s predictions are
presented and compared to experimental data. The three subse-
quent sections describe the micro-macro simulation algorithm, the
simulation results in the die entry domains, and a summary. Simu-
lation results in the abrupt planar die entry domain are compared
to experimental data taken from the PIB solution in this domain.

2 Rheological Model and Material Function Predic-
tions

The isothermal flow of an incompressible fluid with density � is
governed by the momentum and mass balance equations:

�� �u

�t
+ �u · ��u� = − �p + � · � �1�

� · u = 0 �2�

where p and u denote the pressure and the velocity fields, respec-
tively, and � is the extra-stress tensor. In general, the extra-stress
tensor � is represented as a sum of the polymer contribution �p
and the Newtonian solvent contribution �s, given by �s=�s�̇,
where �s is the solvent viscosity and �̇ is the rate-of-strain tensor.
The polymer contribution �p to the extra-stress tensor must be
modeled with an appropriate rheological model. In this paper, the
following microscopic-based rheological model is considered.

2.1 Model Description. The dynamics of the model are de-
scribed by two independent Gaussian random variables, Q1�t� and
Q2�t�, each of which is a 3�1 column vector that is repeatedly
created, allowed to evolve according to an equation of motion,
and then destroyed in an independent manner. At its time t� of
creation, each vector is a standard Gaussian random variable. As-
sociated with each random variable is a lifetime si during which
the vector evolves according to its corresponding deterministic
equation of motion

dQ1�t�
dt

= ��t� · Q1�t�, t� � t � t� + s1 �3�

dQ2�t�
dt

= − �†�t� · Q2�t�, t� � t � t� + s2 �4�

These equations are based on the assumption that the vectors de-
form affinely in the homogeneous flow field represented by the
transpose of the velocity gradient tensor �. At time t�+si, the
vector Qi �i=1,2� is destroyed and again �independently� ran-
domly generated according to the standard Gaussian distribution
function. Using this newly generated vector as an initial condition,
Qi again evolves according to Eq. �3� �for i=1� or Eq. �4� �for i
=2� during a second time interval, and so forth over many time
intervals until the time at which we want to compute stress is
reached.

The vector Q1�t� represents the end-to-end configuration vector
from network theory of concentrated polymer solutions and poly-
mer melts �12�. It describes the configuration of segments, or
tubes, defining the temporary physical entanglements of the mac-
romolecules. The dual vector Q2�t� represents the same concept as
anisotropic tube cross section in reptation theory �13�. It points

from the centerline of the tube to the wall of the tube, where the
tube represents the topological constraint imposed by the sur-
rounding macromolecules. It is, therefore, a representation of the
tube cross section, or an area element of the segment.

Given the above dynamics, the polymer contribution to the
extra-stress tensor �p is expressed as the expectation of a function
F of these dynamics. It is most conveniently written in terms of
conditional expectations of F �p. 53 of �14�� as follows:

�p�t� = �F„Q�t�…� =	
−�

t

�F„Q̂�t,t��…�	�t − t��dt� �5�

where 	�t− t�� is the probability density associated with the ran-
dom variable representing the creation time of a vector, under the
assumption that strain effects and time effects may be factored.

The vectors Q̂1�t , t�� and Q̂2�t , t�� are the solutions of Eq. �3� and

Eq. �4�, respectively. We set Q�t�= �Q1�t� ,Q2�t��† and Q̂�t , t��
= �Q̂1�t , t�� ,Q̂2�t , t���†. For sufficiently small dt�, the product 	�t
− t��dt� represents the probability that a strand which lives at time
t was created in the interval of length dt� around t�.

In the model described here we take

�p�t� = G�0��f1�Q1
2,Q2

2�Q1�t�Q1�t� + f2�Q1
2,Q2

2�Q2�t�Q2�t�� �6�

where the factor G�0� is the relaxation modulus G�t− t�� at t= t�,
and f1 and f2 are scalar functions of Qi

2=Qi ·Qi, i=1,2. The func-
tions f1 and f2 represent the continuum mechanics part of the
model. The parameters contained in these functions can be chosen
to fit rheological data, if desired. In order to ensure that the correct
linear viscoelastic behavior is described by the model, the func-
tions, f1 and f2, must satisfy a small deformation constraint, as
described in �9�.

Both the memory function, m�t− t��, of the fluid and the prob-
ability density, 	�t− t��, are related to the probability of a strand,
Qi, having survival time s exceeding t− t� via

m�t − t��
m�0�

=
	�t − t��

	�0�
=	

t−t�

�

p�s�ds �7�

where p�s� is the probability density for survival time s �9,15�.
Through a coordinate transformation, a survival time s� �0, � �
can be obtained from a uniform random number z� �0,1� via the
invertible function

z�s� =	
0

s

p�s��ds� = 1 −
m�s�
m�0�

�8�

where s= t− t�. Often the memory function of a fluid is available
in the form of the Maxwell linear viscoelastic memory function

m�s� = 

k=1

K
�k


k
2 e−s/
k �9�

where 
k and �k, k=1, . . . ,K, are a set of relaxation times and
partial viscosities for the material, whose values can be found
from linear viscoelastic data, such as the storage and loss moduli
measured in small amplitude oscillatory shear flow.

For a single-mode model �K=1�, the expression for z=z�s� in
Eq. �8� can be inverted analytically to give s�z�=−
kln�1−z�. For
a multimode memory function �K�1�, z�s� cannot be inverted
analytically. Since the multimode model can be written as a sum
of single-mode models, each mode can be simulated separately
and the results added together. Although this is the most conve-
nient and straightforward approach, the computational time in-
creases with the number of relaxation times. Therefore, in this
study, a survival time is generated from the entire relaxation spec-
trum by using a rapidly converging nonlinear iteration scheme
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�e.g., the Newton-Raphson method� to solve Eq. �8� for s, given a
value of z. A very good initial guess is computed using piecewise
function approximations.

2.2 Fluid and Predictions of Material Functions. The fluid
we consider is a concentrated polymer solution, specifically a 5%
polyisobutylene �PIB� solution in tetradecane �C14� at 25°C, de-
scribed by Quinzani et al. �10,11�. The relaxation spectrum was
determined by Quinzani et al. �10� and is given in Table 1.

The form of the strain functions in Eq. �6� was chosen based on
past experience �9� to be f2=0 and

f1�Q1
2,Q2

2� =
1

a0 + a1Q1
2 + a2Q2

2 �10�

The parameter values were taken to be a0=0.635, a1=0.040, and
a2=0.038. These values were chosen to give good predictions to
the material functions of the PIB solution and to satisfy the small
deformation constraint.

The steady-state and transient material functions were com-
puted for the PIB solution in shear and elongational flows. In all
cases, an ensemble of 107 trajectories was used for each configu-
ration vector. Vectorization was employed to reduce the computa-
tional time, and a variance reduction technique was used to con-
trol the statistical error at low shear or strain rates. See �9� for
details of the simulation algorithm. The statistical errors for these
simulations are so small that the computed values can be regarded
as “exact” values of the model predictions. For comparison to the
micro-macro simulation algorithm described in Sec. 3, the simu-
lation algorithm here, in homogeneous flow, is referred to as the
standard simulation algorithm.

A sample of the model’s predictions to the material functions is
given in Fig. 1. The error bars in the model’s predictions are
smaller than the size of the symbols and are not visible. The top
graph shows the model’s predictions of the viscosity, �+�t�, in the
start-up of shear flow, at two shear rates along with the experi-
mental data report in Quinzani et al. �11�. All experimental data
points for the PIB solution were read from the graphs in �11�. The
model predicts the start-up behavior very well including the small
overshoot at �̇=100 s−1.

The middle graph shows the steady-state shear viscosity � and
the first normal stress coefficient, �1= ��11−�22� / �̇2. Again there
is good agreement between the model and the experimental data.
The horizontal dashed lines represents the zero-shear-rate viscos-
ity �0=�p+�s=1.4258 Pa s and the zero-shear-rate first normal
stress coefficient computed from the generalized Maxwell model.

Finally, the bottom graph of Fig. 1 shows the model’s predic-
tions of the steady-state second normal stress coefficient, �2
= ��22−�33� / �̇2, and the normal stress ratio, �2 /�1, in simple
shear flow. Although there was no experimental data with which
to compare, the magnitudes and behavior of these values is rea-
sonable for this type of fluid.

The model also predicts the correct qualitative behavior in
uniaxial elongational flow, such as strain hardening. There was no
reliable experimental data in uniaxial elongational flow for this
PIB solution.

3 Micro-Macro Simulation Procedure
We are interested in computing the isothermal, incompressible

flow of a polymeric fluid using micro-macro simulations. A de-
coupled approach is taken in which the velocity and pressure
fields are computed in one step, where a previously computed
stress tensor enters the momentum equation as a pseudo-body
force, and the polymer stress is computed in the second step from
this updated velocity field.

The velocity and pressure fields are computed from the momen-
tum and continuity equations, Eqs. �1� and �2�, using standard
finite element techniques. In accordance with the decoupled ap-
proach, the divergence of the extra-stress tensor is treated as a
known pseudo-body force. The finite element method is applied to
the penalty formulation of Eqs. �1� and �2�. The type of finite
element used is the crossed-triangle macro-element �16,17�, which
consists of a quadrilateral divided into four triangles formed by
the diagonals of the quadrilateral. On each triangle, linear velocity

Table 1 Relaxation spectrum for the PIB solution at 25°C, sol-
vent viscosity �s=0.002 Pa s, polymer viscosity �p
=1.4238 Pa s

Mode Number 
i �s� �i �Pa s�

1 0.6855 0.0400
2 0.1396 0.2324
3 0.0389 0.5664
4 0.0059 0.5850

Fig. 1 Model predictions of PIB solution in simple shear flow
and comparison to experimental data
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interpolants are used and pressure is taken to be constant �via the
penalty equation�. Rigorous convergence results for this element
have been established in �17�. Feigl and co-workers used this
element in standard macroscopic finite element simulations of
polymeric flow �18–21� and in micro-macro simulations �2�. Re-
gardless of whether the flow is steady or transient, the time de-
rivatives are retained in the momentum equation, and a time-
marching scheme is used. For steady problems, this strategy
increases stability of the algorithm. Details of the macro part of
the algorithm can be found in �16,20�.

The micro part of the simulation consists of calculating the
polymer stress from the molecular-based model described in Sec.
2. However, since the flow is not homogeneous in arbitrary flow
domains, the transpose of the velocity gradient in Eqs. �3� and �4�
must be allowed to vary with x as well as with t. In this case, the
equations of motion can be viewed to be in Lagrangian form with
the time derivatives being material derivatives. The particle track-
ing approach to the calculation of polymer stress uses this La-
grangian formulation of the equations of motion.

In the configuration field approach, proposed by vanden Brule
and co-workers �5,7�, these Lagrangian equations of motion are
written in Eulerian form as

�Q1�x,t�
�t

+ u�x,t� · �Q1�x,t� = ��x,t� · Q1�x,t� �11�

�Q2�x,t�
�t

+ u�x,t� · �Q2�x,t� = − �†�x,t� · Q2�x,t� �12�

for t�� t� t�+si, i=1,2. In this case, Q1�x , t� and Q2�x , t� are
configuration fields that are defined at every point of the domain.
Initially, the configuration fields are spatially uniform. Similar to
the Lagrangian approach, associated with each configuration field
is a lifetime si, during which the field evolves according to Eq.
�11� or Eq. �12�. Once the lifetime is reached, the entire configu-
ration field is destroyed and immediately reset to a new initially
spatially uniform, random configuration field.

The equations of motion, Eqs. �11� and �12�, are spatially dis-
cretized using the discontinuous Galerkin method. This method
reduces coupling between elements and allows the stress and con-
figuration fields to be calculated at the element level. The repeated
solution of many large systems of equations is thus avoided.
Omitting the details of the derivation, the weak form of Eqs. �11�
and �12� can be stated as follows: for each element e, find Q1,
Q2�W at time t such that for all ��W

	
e
� �Q1

�t
+ u · �Q1 − � · Q1� · �de

+	
�e−

�n · u�Q1
E − Q1�� · �d� = 0 �13�

	
e
� �Q2

�t
+ u · �Q2 + �† · Q2� · �de

+	
�e−

�n · u�Q2
E − Q2�� · �d� = 0 �14�

where W� �L2���2 denotes the functional space for Q1 and Q2,
and Qi

E is the value of Qi, i=1,2, in the element�s� upstream of
e. This quantity is passed, or convected, across the inflow
boundary, �e−, of the element e.

Although several types of approximations for the configuration
fields are possible, we take Wh to be the space of piecewise con-
stant functions on the triangles of the velocity elements. This
choice of Wh is consistent with the linear velocity interpolants in
the macro calculation of velocity and pressure. With this approxi-
mation, the convection of configuration fields in each triangle

comes only through the boundary integral term. As a conse-
quence, the resulting semi-discrete system of equations forms an
initial-value problem, which can be solved analytically. The fact
that no element system of equations needs to be solved is an
advantage of using the velocity and configuration field approxi-
mations described above.

As a postprocessing step, the trianglewise constant pressure
field, stress field, and velocity gradients are projected onto the
space of continuous bilinear polynomials based on the vertices of
the quadrilateral macro-elements.

4 Simulation Results
The performance of the micro-macro algorithm is evaluated by

simulating the flow of the PIB solution in a planar tapered die
entry domain and in a planar abrupt die entry domain. The simu-
lation results were compared to the known behavior of polymers
and to available experimental data. Furthermore, since the model
quantitatively predicts the behavior of the PIB solution in homo-
geneous steady-state shear flow �see Fig. 1�, the steady-state
model predictions from the standard simulation algorithm in ho-
mogeneous shear flow are also compared to the stress computed
from the micro-macro simulations in the fully developed flow of
the downstream channel. Recall that the values from the standard
simulation algorithm are exact model predictions.

In both domains, the flow is assumed to be symmetric about the
centerline, so that the computational domain is reduced. The
boundary conditions imposed for both problems were: no slip
along the walls of the channels, the symmetry condition along the
centerline, a parabolic velocity profile along the inlet boundary
and the fully developed velocity profile along the outlet boundary.
The fully developed profile along the outlet boundary was ob-
tained by computing the flow at the same volumetric flow rate in
a channel of uniform width equal to the width of the downstream
channel of the die entry domain.

4.1 Tapered Die Entry. The relevant dimensions of the ta-
pered contraction domain are the half-height of the upstream
channel, Hu=4 cm, and half-height of the downstream channel,
Hd=1 cm. This yields a contraction ratio of 4:1. The contraction
occurs in the region 0�x�3 cm and x=−8 cm corresponds to the
inflow boundary while x=13 cm corresponds to the outflow
boundary.

The simulations were performed on two finite element meshes.
The first mesh contained 200 quadrilateral macro-elements and
446 velocity nodes. The second, more refined, mesh contained
480 macro-elements and 1029 velocity nodes.

Several flow rates were considered, ranging from Q
=10 cm2/s to Q=50 cm2/s. Good convergence was observed for
all the flow rates, and with few exceptions, the results were mesh
independent. Results for one flow rate, Q=30 cm2/s, are pre-
sented below. The behavior at the other flow rates is similar.

Figure 2 shows the typical streamline pattern in the tapered
contraction. As expected, all streamlines are open and there is no
recirculation. Figure 3 shows the axial velocity profile along the
centerline and along an axial cross section in the fully developed
flow of the downstream channel. The centerline axial velocity
profile displays the typical overshoot immediately after entry into
the downstream channel before it reaches a steady value. The size
of the overshoot was reduced with the mesh refinement, but is still
present. This was the only noticeable mesh dependency observed

Fig. 2 Streamline patterns in the tapered contraction domain
for Q=30 cm2/s
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in these calculations. All other velocity and stress profiles were
mesh independent. The axial velocity profile at the cross section
x=8 cm in the downstream channel is shown in the bottom graph
of Fig. 3. Although not shown for graphical clarity, all subsequent
axial velocity profiles coincide with this one, indicating that the
flow is fully developed. The parabolic profile corresponding to a
Newtonian fluid at this flow rate is also shown in the graph. Com-
parison of the two profiles shows the shear-thinning behavior of
the PIB solution.

In addition to the velocity profiles of Fig. 3, there is further
evidence that the flow in the downstream channel is fully devel-
oped shear flow: the stress and shear rates are virtually constant at
a given height above the centerline. Since the fully developed
flow in the downstream channel is shear flow, the stress values
from the micro-macro simulation can be compared to those com-
puted from the standard simulation algorithm in homogeneous
shear flow. As discussed in a previous section, the latter values
can be considered to be “exact.” To make the comparison, the
constant shear rate at a given y value in the downstream channel,
computed from the micro-macro simulation, is used to calculate
the extra-stress from a standard simulation in homogeneous shear
flow.

Figures 4 and 5 show the shear stress �12 and first normal stress
difference, N1=�11−�22, at a representative set of y values �nor-
malized by the half-height, Hd, of the downstream channel� for the
flow rate Q=30 cm2/s. The results from three different ensemble
sizes of configuration fields are shown, NF=2000, NF=4000, and
NF=8000. The horizontal lines in each graph, marked by the solid
symbols, represent the steady-state values computed from a stan-
dard simulation in homogeneous shear flow. There is very good
agreement between the values from the micro-macro simulation
and the “exact” values calculated in homogeneous flow. The ex-
ception is the values of N1 close to the centerline. As previously
mentioned, the stress values were mesh independent.

These graphs also allow us to determine the effect of the en-

semble size NF used in the micro-macro simulations on the calcu-
lated stress values. Figure 4 shows that there was almost no effect
of NF on the �12 component of the stress tensor. An ensemble of
NF=2000 configuration fields was sufficient to get very good pre-
dictions for the shear stress in the downstream channel, and in-
creasing NF to 4000 yielded excellent agreement. There is more of
an effect of NF on the first normal stress difference, as shown in
Fig. 5, particularly close to the wall. Increasing NF to 8000 pro-
duced excellent agreement in N1 close to the wall, but had less
effect on the predictions close to the centerline. Although not
shown, it was also observed that the velocity profiles were inde-
pendent of the ensemble size.

4.2 Abrupt Die Entry Simulations and Comparison to Ex-
perimental Data. The abrupt slit die entry experiments, which
were simulated in this study, were performed by Quinzani et al.
�11�. The dimensions of the slit die were: half-height of the up-
stream channel, Hu=1.27 cm, half-height of the downstream
channel, Hd=0.32 cm, and half-width of the channel, W
=12.7 cm. The contraction ratio was 3.97:1.

The simulations were performed on the two-dimensional cen-
terplane of this domain �x3=0�. In doing so, it is assumed that the
width of the channel is sufficiently large so that the flow in the x3
direction does not strongly affect the flow in the centerplane. The
computational domain was further reduced by taking advantage of
symmetry along the centerline �x2=0�. The half-heights of the
upstream and downstream channels in the computational domain
were the same as in the experiment, and the lengths of these
channels were Lu=8 cm and Ld=13 cm.

Two finite element meshes were used. The first mesh contains
613 rectangular macroelements and 1357 velocity nodes, and a
second, more refined, mesh consists of 1200 macroelements and

Fig. 3 Axial velocity profiles in the tapered contraction do-
main along the centerline and along an axial cross section of
the downstream channel for Q=30 cm2/s

Fig. 4 Simulation results in the tapered contraction domain
for Q=30 cm2/s: „a… NF=2000 and „b… NF=4000. Horizontal lines
are the exact steady-state values.
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2514 velocity nodes.
Simulations were performed over a range of volumetric flow

rates, Q, corresponding to the flow rates Q̂ used in the experi-
ments. The latter �in units cubic centimeters per second� were
converted to the former �in units square centimeters per second�
by assuming that the flow in the x3 direction was nearly uniform.
The results from two flow rates are presented here: Q
=6.42 cm2/s and Q=9.92 cm2/s. At all flow rates considered, the
simulation results were mesh-independent.

Figure 6 shows the streamline patterns from the numerical
simulations for the two flow rates. A significant vortex is ob-
served, as is typical for viscoelastic flows in abrupt contraction
domains. Furthermore, over the range of flow rates considered, the
size of the vortex did not grow with increased flow rate. This lack
of vortex growth is again typical of polymers in planar contrac-
tions �18�. At all flow rates, the size of the vortex, �=Lv / �2Hu�,
remained at 0.24, where Lv is the vortex detachment length along
the upstream wall. The size of the vortex in the experiments was

not reported.
A comparison of the predicted flow kinematics and the experi-

mental data is given in Fig. 7. The top graph shows the compari-
son of axial velocity along the centerline of the domain, while the
bottom graph shows the derived centerline elongation rates. The
centerline velocity in the experiments was measured using laser
doppler velocimetry �11�. The figure shows that there is generally
good agreement. The model and simulation predict well the char-
acteristic velocity overshoot within the die before a constant value
is reached. In contrast, a velocity overshoot was not apparent in
the experimental data. This difference in velocity is reflected in
the elongation rates. Nevertheless, both simulation and experi-
ment show that the maximum elongation rate is reached immedi-
ately before the die entry, which is characteristic in die entry flow
�18�. Simulation results from both meshes are shown in these
figures, verifying mesh independence.

5 Summary
A micro-macro simulation algorithm to calculate the flow of

polymeric fluids was developed and implemented. The calculation
of the velocity and pressure fields was performed using standard
finite element techniques, while the polymer stress was calculated
from a microscopic-based rheological model using stochastic
simulations. The rheological model considered in this study com-
bines aspects of network and reptation theories for concentrated
polymer solutions and melts with aspects of continuum mechan-
ics.

The fluid considered was a concentrated polyisobutylene �PIB�
solution. After determining model parameters that produced good
agreement between model predictions and experimental data in
viscometric flows, the performance of the micro-macro algorithm,
as well as the rheological model, was evaluated by simulating the
flow of the PIB solution in two benchmark contraction domains.
In a tapered contraction domain, the simulations predicted the
correct qualitative behavior of polymeric fluids. The simulation
results in an abrupt die entry domain also predicted the correct

Fig. 5 Simulation results in the tapered contraction domain
for Q=30 cm2/s: „a… NF=2000 and „b… NF=8000. Horizontal lines
are the exact steady-state values.

Fig. 6 Streamline patterns in the abrupt contraction domain

Fig. 7 Centerline velocity profiles and elongation rates: ex-
perimental data „closed symbols…, simulation „open symbols…
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qualitative behavior and were compared to experimental data. It
was found that the computed centerline velocity and elongation
rates generally agreed well with the experimental values reported
in the literature.

As with all multiscale simulations, the computational cost of
the simulations performed here was high. Using 2000 configura-
tion fields for each of the two configuration vectors resulted in
computational times of 0.93 s per triangle per iteration on a Dell
Inspiron 8100. This time grew linearly with the increase of con-
figuration fields and elements. A major factor contributing to the
high computational time for the current simulations is the accurate
determination of a survival time s for each configuration field
from the multimode relaxation spectrum of the fluid. Recall that in
the single-mode case, there is an analytical expression for s as a
function of a uniformly distributed random number z. Therefore, a
survival time can be generated through a single-function evalua-
tion. However, in the multimode case, a nonlinear equation for
z�s� must be solved every time a new survival time is needed.
Even though a fast converging Newton method is used to solve
this equation, the process is still time consuming. This is due to
the behavior of the memory function, in particular, the locally
high gradients, and the fact that a good initial guess must be found
to guarantee convergence of the Newton iterates. Although we
have seen that it is sometimes possible to reduce this computa-
tional time by simulating each mode separately, it is not guaran-
teed that this will always be the case, particularly when the num-
ber of relaxation times increases. This is because additional
ensembles must be processed. Currently the most reliable and
robust way to reduce computational costs is to parallelize the code
with respect to the ensemble of configuration fields.

In conclusion, the micro-macro simulation algorithm presented
here performed very well for our molecular-based model in the
test die entry domains. The dynamics of the model are very simple
and there is substantial room for improvements, such as the inclu-
sion of nonaffine motion of the molecules, finite extensibility and
nonlinear restoring forces. Future work includes improving the
dynamics of the model, testing the model modifications using the
micro-macro algorithm, and extending the algorithm to other
molecular-based models.
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Momentum Transfer Between
Polydisperse Particles in Dense
Granular Flow
We perform molecular dynamics (MD) simulations (based on the soft-sphere model) of a
model dry granular system consisting of two types of spherical particles differing in size
and/or density to characterize particle-particle momentum transfer (solid drag). The
velocity difference between two types of particles is specified in the initial conditions, and
the evolution of relative mean velocity and the velocity fluctuations in terms of granular
temperature are quantified. The dependence of the momentum transfer is studied as a
function of volume fraction, size and density ratio of the two types of particles, inelas-
ticity, and friction coefficient. An existing continuum model of particle-particle momen-
tum transfer is compared to the MD simulations. A modified continuum solid drag model
is suggested for a limited range of parameters. �DOI: 10.1115/1.2140803�

Introduction

Granular flows as well as dispersed particle flows �particles in
fluid� are widely seen in nature and applied in industrial pro-
cesses. Two approaches are currently used to model the motion of
particle phase: particle �Lagrangian� approach and multiphase
fluid model �continuum approach�. In a particle approach, indi-
vidual particles are tracked by solving for particle motion in a
discrete element method �DEM� based on the soft-sphere contact
model �1–3�, which is popularly being called molecular dynamics
�MD� �4,5� simulation in recent years. The capability of this ap-
proach is largely limited by the computational expense incurred in
simulating a large number of particles. In a multiphase fluid
model, the particle phase is approximated as a continuum fluid,
and thus a set of continuum equations �conservation of mass, mo-
mentum, energy� for a control volume is obtained from granular
gas kinetics. The advantage of the continuum approach is that it is
capable of computing large systems. Particle number is not rel-
evant in the continuum approach. One widely used numerical
code, MFIX �6�, developed at the National Energy Technology
Laboratory �NETL�, is based on the continuum approach, and this
work is partially motivated by the modeling questions that arise
during application of the code.

MFIX is a hydrodynamic model for fluid-solids flows, based on
conservation laws of mass, momentum, energy, and species for
describing the hydrodynamics, heat transfer, and chemical reac-
tions in dense or dilute fluid-solids flows. The conservative equa-
tions must be closed by several constitutive relations including the
particle-particle momentum transfer relation we are studying in
this work. The model treats the fluid and solid phases as interpen-
etrating continua. Each solid phase consists of particles with iden-
tical particle properties such as density, diameter, and so on. Phase
volume fractions are introduced to track the fraction of the aver-
aging volume occupied by various phases. The code is used as a

“test-stand” for testing and developing multiphase flow constitu-
tive equations. More about MFIX can be found from the website
of www.mfix.org.

The development of kinetic theory �7� of dense granular flows
encounters a tremendous difficulty from the fact that particle col-
lisions in granular flows are inelastic. The basic assumptions on
which solving the Boltzmann equation �8� for ideal gas molecules
�elastic collision� are based do not hold for granular flows. The
continuum models have to be closed by employing approxima-
tions and empirical relations.

A real granular system consists of several kinds of particles
with different sizes, densities, or other properties. For continuum
models, each kind of particles is denoted as one solid particle
phase and is described by one set of governing equations of con-
tinuum mechanics. Each particle phase has to experience internal
“fluid-dynamics” �4,9�, fluid-particle interaction, and particle-
particle interaction, so that the fluid-particle momentum transfer
term �also called fluid drag� and particle-particle momentum
transfer term �also called solid drag� appear in the momentum
equations of each particle phase. In this work, we focus on
particle-particle momentum transfer through the study of a dry
bidisperse granular mixture.

Existing models for particle-particle momentum transfer are
semi-empirical and applicable to a limited range of flows �7� �di-
lute flows in most cases�. In efforts to explore the characteristics
of granular flows and enhance predictive ability of continuum
models, lots of direct simulations of granular systems have been
done. There are in general two methods in such MD simulations:
soft-sphere model and hard-sphere model. The soft-sphere contact
model is pioneered by Cundall and Strack �1�. In recent years
several MD simulations of bidisperse granular systems �10,11�
based on hard-sphere model are very attractive to the study of
momentum transfer between particle phases.

In this work, we perform MD simulations of a dry bidisperse
granular mixture in the soft-sphere framework �1–5� to character-
ize the solid drag for the simple system and compare the results to
an existing continuum model, specifically the model used in
MFIX �although other continuum models can also be used for
comparison�. We compare results from the two approaches, pro-
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pose a modified model based on the original MFIX model, and
discuss ideas for improving the continuum model for solid drag.

Study System and Solution in Continuum Approach. A
simple case, two types of dry particles in a control volume with
periodic boundary conditions on all sides, and without external
force, but with an initial velocity difference in one velocity com-
ponent, is a good starting point for the study of particle-particle
momentum transfer �or solid drag�. The homogeneous and peri-
odic conditions make the system simple for modeling in the con-
tinuum approach. The constitutive relations for dynamics inside a
solid phase are not involved. In most continuum multiphase mod-
eling �6�, the governing equations for such a homogeneous case
can be written as

d

dt
��1�1u1� = − F12�u1 − u2� �1�

d

dt
��2�2u2� = F12�u1 − u2� �2�

where �1,2, �1,2, u1,2 are the volume fraction, particle mass den-
sity, and number-weighted mean velocity for particles of type 1
and 2, respectively, and F12 is the solid drag coefficient. Due to
the periodic conditions on all sides, the volume fractions in the
control volume are fixed. Therefore, the velocity difference is ob-
tained from the above equations as

d

dt
�u1 − u2� = − � 1

�1�1
+

1

�2�2
�F12�u1 − u2� �3�

F12 is usually a linear function of magnitude of relative mean
velocity in the form of

F12 = C12�u1 − u2� �4�

Here C12 is a coefficient that is independent of velocity. The gov-
erning equation then becomes

d

dt
�u1 − u2� = − � 1

�1�1
+

1

�2�2
�C12�u1 − u2�2

The solution is

�u1 − u2� = �� 1

�1�1
+

1

�2�2
�C12t + 1/�u1 − u2�0	−1

The system shares some properties with the homogeneous cool-
ing state such as the asymptotic decay rate of the velocity is like
1/ t, a fact that follows from the lack of inherent time scales. For
easy description of the current work, we normalize the solution
using a velocity scale as the initial velocity difference u0
= �u1−u2�0 /2.0, a length scale as the average diameter of two
types of particles d0= �d1+d2� /2, and a time scale as t0=d0 /u0.
We use the notation u12 to denote the velocity difference �u1

−u2� and C̃12 to symbolize the term in dimensionless form, but we

drop off the ˜ on other terms such as velocity and time for sim-
plicity. According to the MFIX model �6,12�, we have the dimen-
sionless momentum equation as well as its solution in our final
form:

du12

dt
= − C̃12u12

2 �5�

u12 =
1

C̃12t + 0.5
�6�

C̃12 = � 1

�1�1
+

1

�2�2
�d1 + d2

2
C12 �7�

C12 =
3�1 + e���/2 + ��2/8��1�1�2�2�d1 + d2�2g0

2���1d1
3 + �2d2

3�
�8�

g0 =
1

1 + �s
+

3d1d2

�1 − �s�2�d1 + d2�
� �1

d1
+

�2

d2
� �9�

�s = �1 + �2 �10�

where e, � are two microscale particle material properties during
contacts: restitution and friction coefficient, �s is the total volume
fraction of particles, d1,2 is the particle diameter for particles of
type 1 and 2, respectively, and g0 is the radial distribution function
at contact originated by Lebowitz �13�.

It can be seen that the dimensionless solution is a function of e,
�, �1, �2, d2 /d1, �2 /�1, namely

C̃12 = f�e,�,�1,�2,d1/d2,�1,�2� �11�
The solid drag coefficient is a function of many parameters. We
cannot exhaust all the conditions to cover the full range of varia-
tion of every variable. In this work, we focus on the equal volume
fractions of two particle phases and on medium to dense particle
volume fraction.

The coefficient C12 in Eq. �8� is derived in MFIX �6,12� by
considering two colliding particles located at r1, r2 with velocities
c1, c2, and diameters d1, d2, respectively. The average momentum
transfer per unit volume between the two types of particles is

I12 = d12
2 


c12·n�0

J�c12 · n�f12�r1,c1,r1 + d12n,c2�dndc1c2

�12�

where I12 is average momentum transferred per unit volume, d12
= �d1+d2� /2, the relative velocity c12=c1−c2, n is the unit vector
from the center of particle 1 to the center of particle 2, J is the
momentum transferred between particles 1 and 2, and f12 is the
pair distribution function which is assumed to be the product of
two single velocity distribution functions

f12 = g0f1f2 �13�
The single velocity distribution functions take the form of a delta
function

f1 = 6�1��c1 − u1�/�d1
3 �14�

f2 = 6�2��c2 − u2�/�d2
3 �15�

Following Walton �14�, a collision is divided into sticking colli-
sion part and sliding collision part, so that the formulation of J
will take into account the repulsion, dissipation, and friction ef-
fects.

Soft-Sphere MD Model. GranFlow is a parallel MD simulation
code for granular flows that has been developed at Sandia Na-
tional Lab. and has been evaluated, verified, and applied in many
publications �3,5�. Readers who are interested in high-
performance numerical algorithms are referred to Ref. �15�. The
MD simulation is based on a 3D soft-sphere contact model �1–3�
where small deformations and multiple contacts on a sphere are
allowed, and friction and rotation are also taken into account.
Contact force is first calculated from the deformation through a
microscale spring-dashpot model, then is used in Newton’s second
law for every particle �spherical shape is assumed throughout this
work� to update the velocity and angular velocity of each particle.
The implementation of contact forces is essentially a reduced ver-
sion of that employed by Walton and Braun �2�, developed earlier
by Cundall and Strach �1�.

The spheres interact on contact through a Hookean �linear� con-
tact law �1,2�. For two contacting particles �i , j�, at position
�ri ,r j�, with velocities �vi ,v j� and angular velocities ��i ,� j�, a
relative normal compression is
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�n,ij = ��di + dj�/2 − rij�nij �16�

where rij =ri−r j, rij = �rij� and the normal direction nij =rij /rij. The
normal and tangential contact forces for particle i are given by

Fn,ij = kn�n,ij − �nmeffvn,ij �17�

Ft,ij = − kt�t,ij − �tmeffvt,ij �18�

where meff= �mimj� / �mi+mj�, vn and vt are the normal and tangen-
tial components of the relative surface velocity, and kn,t and �n,t
are spring and damping coefficients, respectively. �t is the elastic
tangential displacement between spheres, obtained by integrating
surface relative velocities over time during deformation of the
contact. The magnitude of �t is truncated as necessary to satisfy a
local Coulomb yield criterion �Ft����Fn�. Frictionless particles
can be simulated by setting zero friction coefficient, �=0.

The presented simulations follow the same framework of Grest
et al. �3,5� regarding the particle material parameters. The spring
constants are set to kn=2	105m*g /d0, where m* and d0 are mass
and diameter of the particle in monodisperse mixtures, respec-
tively, g is the gravity acceleration, and kt=2kn /7. The �n is re-
lated to restitution coefficient e. Such a correlation can be found
in Ref. �3�. For a reference particle, physical experiments often
use glass spheres of d=100 �m with �=2	103 kg/m3.

For the present polydisperse systems with two types of par-
ticles, when we investigate size or density effects, we wish to
maintain contact parameters kn, �n unchanged for better under-
standing and comparisons of results. For this purpose, the diam-
eter and mass �or density� of a particle are varied proportionally
relative to the corresponding particle. We maintain d0= �d1
+d2� /2 unchanged, so that d0 is also equal to the diameter of
particles when the two types of particle are the same.

The movement of particle i is described by Newton’s second
law in dimensionless form based on the normalization scales of
m*, d0, g as

mi

m*

dvi

dt
= 

j

�k̃n�n,ij − �̃n
meff

m*
vn,ij� + 

j

�− k̃t�t,ij − �̃t
meff

m*
vt,ij�

�19�

0.4
mi

m*

d�i

dt
= −

1

2
j

dinij 	 �− k̃t�t,ij − �̃t
meff

m*
vt,ij� �20�

The numerical simulation directly solves the above dimensionless
equations, and input and output parameters are all in dimension-

less form. We take k̃n=2	105, kt=2kn /7, and �̃n=0,50 �corre-
sponding to e=1,0.88�. For the Hookean contact model �t=0.
Detailed discussion about contact parameters is available in
Ref. �3�.

To compare to a continuum model based on kinetic theory, the
macroscopic terms �average variables� must be obtained from
simulation results for the particle mixtures. The phase velocity
u1,2 appearing in the continuum approach is equivalent to the
average velocity over all particles of a type in the system. For
example, for solid phase 1,

u1 = �u1,v1,w1� = 
i=1

N1

vi/N1 �21�

N1 is the number of particles of type 1. The granular temperature
is defined as


1 = 
i=1

N1

��ui − u1�2 + �vi − v1�2 + �wi − w1�2�/3N1 �22�

where u1, v1, w1 are three average velocity components. In this
work, the volume of the simulation cell is V=243d0

3. The particle
volume fractions for particle types 1 and 2 are calculated as

�1,2 = ��d1,2
3 N1,2/6�/V

Note that the normalization used here in simulations is different
from that used in the previous section. The resultant terms of
simulation must be transformed to the same normalization system
on which the continuum model is based before any comparison is
performed.

The particle mixture must be initialized to be spatially homo-
geneous. It is difficult to place all particles by random number
generation methods, especially for dense mixtures. We use another
way to initialize the system in this study. We first set all the
particles in a form of lattice arrangements and assign an arbitrary
velocity to each one, and then run the simulation to equilibrate the
mixture. Because relative velocities of particles in a cooling sys-
tem decay very fast, one run of the simulation may not result in
the homogeneous condition. To ensure homogeneity, the output of
a simulation is used as the input of particle positions to the next
simulation, but the velocity of each particle is reset to a random
value. The output-input procedure may be repeated several times.
Finally, the input of particle positions from the homogeneous state
is used to study cases with the velocity set to u0 for one type of
the particles and −u0 for the other type.

Results and Discussion

Effects of e, �, �s. The results are presented in dimensionless
form and the units are omitted. The normalization scales have
been given in the second section of deriving continuum solution
of the granular system.

We first investigate the dependence of particle-particle momen-
tum transfer on the total volume fraction and on the microscale
properties e, �. The particles in two phases are actually the same
with d2 /d1=1, �2 /�1=1. Four combinations of e= �0.88,1�, �
= �0.5,0� are considered. According to the MD model, e=1.0 rep-
resents no energy loss during collision, �=0 represents no
rotation.

The velocity differences u12 varying with time are plotted in
Figs. 1 and 2, respectively, for total particle volume fraction �s
=0.524, 0.304. The initial momentum rapidly decays as the mo-
mentum of particles is redistributed isotropically through colli-
sions �contacts�. The granular temperature of the system immedi-
ately reaches its maximum. We can see the microscale parameters
do make a difference on the momentum transfer, but the differ-
ence is relatively small compared with the difference between the
MFIX model and MD simulation.

MFIX has captured the basic feature of contact parameters. The
MFIX model follows the same trend as the MD simulations. The

Fig. 1 Velocity difference u12 for �1=�2=0.262, d2 /d1=1/1, and
�2 /�1=1/1

64 / Vol. 128, JANUARY 2006 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



order of lines respective to different e, � values from MFIX is the
same as that from MD simulation. However, what concerns us
most is the prominent gaps between the MFIX model and the MD
simulation in Figs. 1 and 2, which overshadow the differences the
microscale parameters make. It is clearly shown that the MFIX
drag model underestimates the momentum transfer. Similar mis-
matches were observed for a wide range of total volume fractions.
Agreement with the MFIX prediction becomes worse as the den-
sity of granular mixture increases.

The continuum solid drag model can be improved by separating
the drag coefficient into two parts: a velocity-dependent part and a
velocity-independent part as follows:

du12

dt
= − C̃12u12�1 + b/u12�u12 �23�

The solution to this equation is

u12 = − b + b�1 −
2.0

2.0 + b
exp�− bC̃12t��−1

�24�

In fact, we found that b is a function of total volume fraction �s,
which is shown in Fig. 3. The curve fit gives the linear function

b = �s + 0.42 �25�

The model constant b is a correction to the original dilute granular
flow solid drag model. Equation �25� indicates that the correction
increases linearly with the total volume fraction.

The comparison of the suggested model and MD simulation for
different volume fractions is shown in Fig. 4. The agreement is
very good.

Effects of Density Ratio. The velocity differences at different
particle density ratios but with all other parameters the same �e
=0.88, �=0.5, �1=�2, d1=d2� are plotted in Fig. 5. The results
show that both MD and Eqs. �23�–�25� are not sensitive to varia-
tion of density. But, we must point out that the density effects
could be important if the particle sizes are not the same, or the
volume fractions of two particle phases are not equal, or the con-
tact parameters change with the density. The present MD simula-
tion uses the same contact coefficients for colliding particles,
which deviates from the reality that material properties have much
difference, especially when the densities are different.

Polydispersity. The size ratio plays a critical role in the solid
drag model. This can be seen from the cubic power on particle
diameters in Eqs. �7� and �8�, but the drag model depends on other
parameters only to the first power.

Figures 6–8 show the results for particles at different size ratios
but with the same particle density �1=�2 and volume fraction �1
=�2=0.152 for the case of e=0.88, �=0.5. The velocity differ-
ence u12 and granular temperature 
 are plotted in Figs. 6 and 7,
respectively. It is interesting to see that the phenomenon of mo-
mentum transfer between particle phases exhibits a nearly delta
functional dependence on particle size. If the particle size ratio is
just a little bit away from 1, specifically d2 /d1�1.1/0.9, all the
velocity difference curves settle down on nearly the same decay
curve. However, near equal size, here 1�d2 /d1�1.05/0.95, the
velocity difference profiles are quite different from the group with

Fig. 2 Velocity difference u12 for �1=�2=0.152, d2 /d1=1/1, and
�2 /�1=1/1

Fig. 3 b as a function of total volume fraction �s

Fig. 4 Velocity difference u12 at various total volume fractions
for d2 /d1=1/1, �2 /�1=1/1, e=0.88, and �=0.5

Fig. 5 Velocity difference u12 at various densities for �1=�2
=0.152 and d2 /d1=1/1
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d2 /d1�1.1/0.9: they decay much faster than those with larger
size ratios. From the comparison of the result of d2 /d1=1.1/0.9 to
that of d2 /d1=1.05/0.95, we can see that a small change of par-
ticle size ratio results in a jump of velocity profiles between the
two cases. But, in each group �1�d2 /d1�1.05/0.95 or d2 /d1
�1.1/0.9�, the velocity profiles stay close together without obvi-
ous gaps among them.

It is encouraging to see that the agreement between Eq. �23�
and MD simulation is very good for the particle size ratios which
are a little bit away from 1, although the agreement is the worst at
d2=d1. The suggested model of Eq. �23� still holds but needs
further modification on b to address the particle size dependence
issue:

du12

dt
= − C̃12�1 + b/u12�u12

2 �26�

b = ��s + 0.42�� dmin

dmax
�n

�27�

where dmin is the smaller diameter and dmax is the larger. In Eq.
�27�, the power n may need to be very large to account for the
jump feature of solid drag. We found that n=10 gives satisfactory
fit to the MD simulations.

As we have seen, the original MFIX modeling does not capture
the discontinuity. So, the next question is what are the major con-
tributors to the mismatch of the multiphase model with the MD

simulation. The parameter g0, the radial distribution function at
contact, is worth studying. The MD simulation can be used to
validate the independency at the specific conditions or to improve
the form of g0 since g0 is the pair correlation function �16� that is
equal to the radial distribution function g12�r� between particle
types 1 and 2 evaluated at contact r=d0.

The form of g0 defined in Eq. �9� is originally from the work of
Lebowitz �13�. Another form of g0 was suggested by Mansoori et
al. �17� and is known �18� to be more accurate. However, the
inability of present models to predict particle-particle momentum
transfer is not because of the form of g0. As a matter of fact, both
forms predict that g0 is not a function of particle size ratio when
the volume fractions of two phases are equal.

The pair velocity distribution function of two particles at con-
tact is generally assumed in the term of product of two single
particle velocity distribution functions �6,12,18�, namely f12
=g0 f1 f2. Thus, g0 appears in the collision term calculation in
kinetic theory.

In the case of spatially homogeneous systems as in the present
study, g12�r� can be calculated by counting the pairs of separation
�16� between particles of type 1 and particles of type 2 with r
−� /2� �rij��r+� /2. We use the numerical kernel function
method �19� for this work. The g0 relations given by Lebowitz
�13� and Mansoori et al. �17� concern equilibrium states, but the
study system in this work is dynamic at early times. We have
calculated g12�r� of the granular assembly outputs from MD simu-
lation at several moments. From the calculation, it is indeed found
that g12�r� is statistically not a function of time as we expected,
although fluctuations with time are found. We also found that the
peak of g12�r� is not always exactly at contact distance, but at a
slightly larger separation. Figure 8 gives the g12�r� averaged over
five time points for two different particle systems. It shows the
shape of g12�r� curves is weakly associated with particle sizes at
�1=�2 condition. But, for both cases g0=g12��d1+d2� /2��2.5.
The form used in the MFIX model, Eq. �9�, gives g0=2.37.

Now, after g0 has been excluded, we reason that a possible
contributor to the disagreement is the assumed delta velocity dis-
tribution function during derivation �12� of the drag model in
MFIX as shown in Eqs. �14� and �15�. The largest momentum
transfer happens when two identical particles collide. Due to the
delta velocity distribution function, some of size information may
be canceled out, leading to underestimation of the momentum
transfer at the equal size condition. Other forms for the velocity
distribution function could be checked against the simulations.
Some models �18� use the Maxwellian distribution function or
log-Maxwellian distribution function. Almost all continuous ve-
locity distribution functions are functions of granular temperature
in an effort to find out more accurate and general constitutive

Fig. 7 Granular temperature � at different sizes for e=0.88, �
=0.5, �1=�2=0.152, and �2 /�1=1. P1 denotes particle phase 1.

Fig. 8 Radial distribution function g12„r… for two cases of
d2 /d1=1 and d2 /d1=1.25/0.75

Fig. 6 Velocity difference u12 at different sizes for e=0.88, �
=0.5, �1=�2=0.152, and �2 /�1=1
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relations. Note that when granular temperature is involved and a
continuous distribution function applied, the near equilibration is
often assumed from the point of view of kinetic theory. The ap-
plication of such a model to a fast decay region starting with zero
granular temperature needs to be examined, and the study system
here may need to be redesigned in order to validate and explore
continuum models.

To better understand the role of granular temperature, it may be
helpful to consider frictionless elastic spheres �e=1.0, �=0�. The
results are shown in Figs. 9 and 10. Oscillation appears in the
velocity difference profile when the relative mean velocity ap-
proaches zero, since the decay is due to the redistribution of en-
ergy in three directions, not to the energy loss. From the compari-
son of Fig. 9 with Fig. 6, we do see that granular temperature must
play a role in the solid drag modeling formulation. For e=1.0,
�=0, the velocity profiles from MD simulations diverge from the
modeled curves after one time unit. Correspondingly, the granular
temperatures increase from zero to the peaks in t= �0,1� and re-
main at the peaks thereafter as shown in Fig. 10. However, granu-
lar temperatures rapidly decay after one time unit for the frictional
and inelastic case e=0.88, �=0.5 as shown in Fig. 7. We will
continue this work in the future. Note that a discontinuity feature
like in Fig. 6 is always a difficult point for continuum modeling.
Another discontinuity problem is referred to free-surface flows
with surface tension on interfaces �20�. The discontinuity may
imply some degree of crystallization at the equal size and equal
volume fraction conditions. Away from the condition, crystalliza-
tion is more unlikely to develop.

Conclusion and Future Work
We have investigated momentum transfer between particle

phases in a limited range of variation of parameters from MD
simulation and MFIX continuum drag model and have provided
the comparison between them. We found a discontinuous behavior
of particle-particle momentum transfer at equal particle sizes from
the MD simulation. This discontinuity may point to some degree
of crystallization at the condition of equal sizes and equal volume
fractions and presents a difficulty in continuum modeling. The
current MFIX model is in good agreement with the simulation
when particle sizes are different, but underestimates the momen-
tum transfer for particles of equal size. A tentative modified drag
model based on the original MFIX model is proposed.

The current model of solid drag has not included the informa-
tion of granular temperature due to an assumed delta velocity
distribution function. Other solid drag models connecting to
granular temperature should be considered and compared with
simulation data in the future. At the same time, we also need to
examine if the model is independent of initial conditions and
whether implementation of initial conditions influences results.
The study case may need redesign to avoid the zero granular
temperature at the initial state. Moreover, all the cases we consid-
ered in this work have equal volume fractions for two particle
phases. Further detailed study of two-particle phases with differ-
ent volume fractions is encouraged, and the crystallization or dis-
continuity that happened at equal sizes and equal volume fractions
may disappear. It is perhaps better to rewrite the dependence of
solid drag on the governing parameters as

C̃12 = f�e,�,�s,�1/�2,d1/d2,�1/�2� �28�

Future work should give attention to the solid drag model varying
with �1 /�2. Indeed, the density ratio may not be negligible if �1
��2. In addition, contact mechanics between different material
particles should be taken into account in the MD simulation.
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Swirling Flow of a Viscoelastic
Fluid With Free Surface—Part I:
Experimental Analysis of Vortex
Motion by PIV
The swirling flows of water and CTAC (cetyltrimethyl ammonium chloride) surfactant
solutions (50–1000 ppm) in an open cylindrical container with a rotating disc at the
bottom were experimentally investigated by use of a double-pulsed PIV (particle image
velocimetry) system. The flow pattern in the meridional plane for water at the present
high Reynolds number of 4.3�104 differed greatly from that at low Reynolds numbers,
and an inertia-driven vortex was pushed to the corner between the free surface and the
cylindrical wall by a counter-rotating vortex caused by vortex breakdown. For the
1000 ppm surfactant solution flow, the inertia-driven vortex located at the corner be-
tween the bottom and the cylindrical wall whereas an elasticity-driven reverse vortex
governed the majority of the flow field. The rotation of the fluid caused a deformation of
the free surface with a dip at the center. The dip was largest for the water case and
decreased with increasing surfactant concentration. The value of the dip was related to
determining the solution viscoelasticity for the onset of drag reduction.
�DOI: 10.1115/1.2136928�

Introduction

Drag reduction is a flow phenomenon in which the addition of
small amount of drag reducers to a fluid causes a reduction in the
turbulent friction compared with the pure fluid at the same flow
rate. There are mainly two different kinds of drag reducers: poly-
mers and surfactants. For polymer solutions, it has been found that
after a period of running, the solution loses its drag-reducing abil-
ity. However, this mechanical degradation was not found for sur-
factant solutions. Therefore, surfactants have been of special in-
terest in recent drag-reducing studies. Dilute surfactant solutions
have been found to significantly reduce turbulent friction drag
�1–3�. Li et al. �1� and Yu et al. �2� reported a 70%–80% turbulent
drag reduction �DR� by use of a very dilute cetyltrimethyl ammo-
nium chloride �CTAC�/sodium salicylate �NaSal� aqueous solu-
tion having surfactant mass concentrations of only 30 and
75 ppm, indicating that this surfactant is a very promising drag-
reducing additive. It is generally considered that the DR phenom-
enon is caused by the viscoelasticity of the surfactant solution
�4–8�. Therefore, rheological measurements can be used for
screening an effective drag-reducing surfactant within a measur-
able range. However, Li et al. �1� showed that the elasticity of the
CTAC solutions is so small that the rheometers could not provide
reliable data for the first normal stress and storage modulus.
Therefore, the challenge to be addressed is how to determine a
surfactant solution with small viscoelasticity having DR ability.
From an economic consideration, the amount of the testing sur-
factant should be as small as possible. Siginer and co-workers
initiated an idea of using the free surface shape of a viscoelastic
swirling flow to generate information of the constitutive equation
for the viscoelastic liquid �9–13�. In the present study, we attempt
to solve this problem by using a swirling flow to observe and

analyze the effect of the drag-reducing surfactant solution on the
vortex inhibition and relate this to the screening of effective low
viscoelastic drag reducers.

Swirling flows exist in many areas of engineering and have
been widely studied for a number of decades. Experimental ob-
servations and/or measurements of Newtonian swirling flows gen-
erated in a closed cylindrical container by rotating the disc and/or
cylindrical wall have been reported by Bien and Penner �14�, Hill
�15�, Escudier �16�, Fujimura et al. �17�, and Ogino et al. �18�. An
extension of the confined swirling flow to non-Newtonian fluids
that have high shear-thinning properties and varying degrees of
elasticity has been reported by Bohme et al. �19�, Day et al. �20�,
Escudier and Cullen �21�, Xue et al. �22�, Bowen et al. �23�, and
Siginer �24�. To separate elasticity from shear thinning, Stokes et
al. �25,26� reported the confined swirling flow of non-Newtonian
fluids that have varying degrees of elasticity with constant shear
viscosity. Arora et al. �27� investigated the influence of CTAC on
closed turbulent swirling flows and observed enhancement in the
radial and tangential mean velocities for CTAC solutions com-
pared to that for water swirling flow. Studies of free surface swirl-
ing flows in containers are scarce compared to the closed swirling
flows. Goller and Ranov �28� dealt with the transient Newtonian
flow in an open rotating cylindrical container and Spohn �29�
observed the vortex breakdown of the swirling flow in an open
cylindrical container with a rotating bottom. Their results showed
that the free surface flows differed greatly from the closed con-
tainer flows. Bohme et al. �30� further studied the open cylinder
with rotating bottom disc for a shear-thinning elastic liquid and a
constant-viscosity elastic liquid. Reverse flow with a bulge in the
free surface was observed at a low Reynolds number. Siginer and
co-workers carried out a series of studies experimentally and theo-
retically on viscoelastic swirling flows with free surface
�9–13,31–33�.

The Reynolds numbers in all of the aforementioned studies on
free surface swirling flows were not high �less than 10,000�. It is
well known that the rotation of the fluid can cause a deformation
of the free surface proportional to the Froude number and that the
Quelleffekt can be generated by the elasticity of the fluid in swirl-

1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the

JOURNAL OF FLUIDS ENGINEERING. Manuscript received June 25, 2004; final manuscript
received August 22, 2005. Assoc. Editor: Dennis Siginer.

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 69Copyright © 2006 by ASME

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ing flows capped by a free surface �30�. Therefore, the elasticity of
the fluid may be recognized by comparing the degree of the free
surface deformation under the same conditions. For the surfactant
drag-reducing flow in application, the mass concentration is usu-
ally below 1000 ppm and the viscosity is not high �usually in the
range of 0.001–0.1 Pa s at room temperature�. At a low Reynolds
number, the Froude number is usually negligible, which results in
a very small deformation of the free surface, and thus a compari-
son between the Newtonian flow and elastic flow shows no obvi-
ous differences. A very high Reynolds number is necessary for
showing a clearly visible difference. The vortex motion for a
higher Reynolds number is not yet clear, especially for non-
Newtonian flow in an open cylinder. In the present study, the
swirling flows of water and CTAC surfactant solutions at a high
Reynolds number in an open cylindrical container with a rotating
disc at the bottom were experimentally investigated by use of a
double-pulsed PIV �particle image velocimetry� system. The sec-
ondary flow in the meridional plane of the cylinder and the radial
distribution of the tangential velocities were measured to analyze
the primary vortex motion in the tangential direction and the sec-
ondary vortex motion in the meridional plane. Measured also were
the swirl decay time �the time between the stopping of the disc
rotation and the cessation of the solution movement before recoil�
and the tangential velocity evolution after the rotating disc was
stopped.

Experimental

Test Facility. The experimental setup is shown in Fig. 1. A
glass cylinder having an inner radius of 70 mm was nearly sub-
merged in a cubic water bath constructed from flat transparent
perspex walls 130 mm in side length. The purpose of the external
water bath was to reduce optical distortion caused by the curved
surfaces of the cylinder. A rotating circular disc having a diameter
of 65 mm and a thickness of 8.5 mm was placed at the bottom of
the cylinder. The water bath was fixed on the surface of a digital
hot plate/stirrer and the temperature of the water bath was con-

trolled by use of the heating function of the hot plate/stirrer. The
temperature probe of the hot plate/stirrer was inserted into the
water bath and the test fluid temperature was measured with a
digital thermometer before the PIV measurements. The tempera-
ture of the water in the water bath and that of the test fluid in the
test vessel were both kept at a constant of 25°C. A magnet bar
��8�55 mm2� was embedded into the rotating disc and the rota-
tional speed was controlled by the magnetic force from the hot
plate/stirrer acting on the magnet bar. The axis of the cylinder and
the center of the disc were carefully adjusted to align with that of
the hot plate/stirrer �magnetic center�. The hot plate/stirrer was
mounted on a flat stage that could be moved back and forth with
an accuracy of 0.1 mm.

Working Fluids. Water and surfactant solutions were used for
the test. The surfactant was cetyltrimethyl ammonium chloride
�CTAC�. Sodium salicylate �NaSal� was selected as the counter-
ion. The surfactant solution was prepared by adding the same
mass concentration of surfactant and counterion to the desired
amount of distilled water. The surfactant concentration was
marked by the concentration of CTAC, and three mass concentra-
tions of 50, 200, and 1000 ppm were tested.

The test fluid was filled into the glass cylinder up to a height H
equal to the inner radius of the cylinder, Rw, and thus the aspect
ratio of the fluid height to radius, H /Rw, was fixed to unity in the
present experiments. The shear viscosities of the three kinds of
surfactant solutions at 25°C were also measured in the shear rate
range of 10–100 s−1 by use of an ARES rheometer equipped with
a double-wall Couette cell.

The Reynolds number and the elasticity number �the ratio of
elastic to viscous time scales� of the fluid in the present study are
defined as

Re0 = ��Rd
2/�0, Re = ��Rd

2/�, E = �G�/�Rd
2 �1�

where �0 is zero-shear viscosity and �G is the relaxation time in
the Giesekus model. Shear viscosity �, which is a function of
shear rate �̇, is evaluated by assuming shear rate �̇ equal to the
angular velocity �. The elasticity of the CTAC solutions in the
present study is so small that the rheometers could not provide
reliable data for the first normal stress and storage modulus. How-
ever, our ARES rheometer was able to provide accurate measure-
ments of the shear viscosity data. For evaluating the elasticity of
the three surfactant solutions, the relaxation times were extracted
by fitting the measured shear viscosity curves to the Giesekus
model �34� instead of the Maxwell relaxation time used by the
other researchers �20,21�. Figure 2 shows the least square fitting
results of the measured shear viscosities of three surfactant solu-
tions with the Giesekus model. � shown in the legend indicates
the mobility factor in the Giesekus model. It appears that the
Giesekus model can describe their shear viscosity characteristics

Fig. 1 Schematic of the test facility

Fig. 2 Fitting results of the measured shear viscosities with
the Giesekus model
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well. Table 1 lists the values of �0, �G, Re0, Re, and E for water
and the three CTAC solutions. The elasticity number indicates the
elasticity effect against the inertia effect.

The Froude number indicates the gravity effect against the in-
ertia effect and is defined as

Fr = �2Rd
2/gH �2�

In the present study, the Froude number is 4.80, which is large for
generating a sizeable deformation of the free surface against the
gravity effect in Newtonian swirling flow.

PIV Measurement. The secondary flow pattern in the meridi-
onal plane and the tangential velocities were obtained by use of a
PIV system consisting of a double-pulsed laser, laser sheet optics,
charge-coupled device �CCD� camera, timing circuit �TSI Model
610032�, image-sampling computer, and image-processing soft-
ware �TSI Insight ver. 3.3�. The double-pulsed laser �New Wave
Research Co., Ltd., MiniLase-II/20 Hz� is a combination of a pair
of Nd-YAG lasers, each having an output of 25 mJ/pulse and a
maximum repetition rate of 20 Hz. By changing the combination
of cylindrical lenses, the laser sheet thickness can be modified
from 0.14 to 0.6 mm and the beam spread angle from
4.3 to 13.3 deg. The timing circuit communicates with the CCD
camera and computer and generates pulses to control the double-
pulsed laser. The CCD camera used �PIVCAM, 10–30, TSI Model
630046� has a resolution of 1280�1024 pixels.

The meridional plane of the swirling flow was illuminated by

the double-pulsed laser for measurement of the secondary flow
pattern. The tangential velocities were also measured by illumi-
nating the vertical planes parallel to the meridional plane at eight
equally spaced radial locations as shown in Fig. 1. The flat stage
could be controlled to move back and forth to obtain the desired
vertical cross section for illumination and measurement. The in-
terrogation area was set at 32�32 pixels �with 50% overlap in
each direction� for velocity vector analyses. PIV images were ac-
quired for 1000 dual frames �2000 double-exposed PIV photo-
graphs� for the meridional plane measurements and 100 dual
frames for the other measurements. Due to the presence of the
cubic water tank, the optical distortion caused by the cylindrical
wall was negligible up to a radius of 0.9Rw. The photograph ac-
quisition rate was 8 Hz, indicating that the velocity field was re-
corded at 4 Hz. The tracer particles used to seed the flow were
acrylic colloids 1–4 	m in diameter. The particle concentration
was adjusted so that on average at least ten particle pairs were
observed in an interrogation window for each case.

After a vector field was calculated by interrogating a dual
frame, TSI Insight software was used to validate it and remove
any erroneous velocity vectors that might have been incorrectly
detected during interrogation due to random noise in the correla-
tion function. Empty data cells �holes� that appeared after the
removal of erroneous velocity vectors were filled using a FOR-
TRAN program created by interpolation of neighboring velocity
vectors.

Results and Discussion
Figures 3�a�–3�d� respectively show the secondary flow pat-

terns in the meridional plane for water, CTAC 50 ppm, CTAC
200 ppm, and CTAC 1000 ppm. The experimental conditions can
be seen in Table 1. The vectors shown in Fig. 3�d� are enlarged to
three times the size of those in Figs. 3�a�–3�c�. Since the flow at
the high Reynolds number in the present study is an unsteady one,
the results shown are the average of the instantaneous velocities
obtained from 1000 dual frames in the measurements. The aver-
age of 100 dual frames shows the same secondary flow pattern,

Table 1 Values of �0, �G, Re0, Re, and E

Water CTAC 50 ppm CTAC 200 ppm CTAC 1000 ppm

�0 �Pa.s� 1.0�10−3 1.05�10−3 1.21�10−2 4.50�10−2

�G �s� 0 0.034 0.25 0.57
Re0 4.3�104 3.7�104 3.2�103 8.6�102

Re 4.3�104 3.9�104 3.9�103 1.8�103

E 0 2.8�10−5 2.0�10−3 1.0�10−2

Fig. 3 Secondary flow patterns in the meridional plane
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indicating the statistically stationary nature of the swirling flow. It
is well known that for Newtonian swirling flows at a low Rey-
nolds number, the inertia-driven vortex plays a dominant role in
the meridional plane. Centrifugal forces cause the fluid to flow
radially outwards along the rotating disc, and then the flow is
deflected upward along the cylindrical wall. At the free surface,
the flow bends towards the center and turns downward to finish its
path of circulation. However, the flow pattern in the meridional
plane for water at the present high Reynolds number differs sig-
nificantly from that at low Reynolds numbers, and the inertia-
driven vortex is pushed to the corner between the free surface and
cylindrical wall by a large counter-rotating vortex. It is considered
that the vortex breakdown phenomenon leads to the appearance of
the counter-rotating vortex. According to the observations con-
ducted by Spohn et al. �29� on vortex breakdown in an open
cylindrical container with a rotating bottom, there is no upper
Reynolds number limit at which breakdown disappears, which is
very different from the observations of the closed cylindrical con-
tainer flow conducted by Escudier �16� in which the breakdown
bubbles disappear beyond a certain Reynolds number. The break-
down bubble increases in size with increasing Reynolds number.
Therefore, it is supposed that the large counter-rotating vortex is
the breakdown bubble. From our numerical calculations �35�, we
also found the existence of the counter-rotating vortex at a large
Reynolds number and the inertia-driven vortex is pushed toward
the cylindrical wall. For the case of CTAC 50 ppm as shown in
Fig. 3�b�, the size of the counter-rotating vortex becomes smaller
and the size of the inertia-driven vortex increases but the intensity
decreases compared to the water case. The size increase of the
inertia-driven vortex is probably caused by the decrease of the
free surface deformation. With further increasing surfactant con-
centration up to 200 ppm as shown in Fig. 3�c�, the counter-vortex
disappears and the inertial-driven vortex decreases in both size
and intensity. This is probably due to the large decrease of local
Reynolds number and the competing interaction between elastic-
ity and inertial force, which weakens both the inertia-driven and
breakdown vortices. For the CTAC 1000 ppm surfactant solution
flow, the inertia-driven vortex locates near the disc-wall intersec-
tion whereas an elasticity-driven reverse vortex governs the ma-
jority of the flow field. However, the vortex intensity is much
smaller compared to that in the water flow case. This differs from
a closed disc-cylinder system, in which a large Re and small elas-
ticity number produce Newtonian-like characteristics in the sec-
ondary flow in the meridional plane.

Figure 4 shows the free surface shapes for water and surfactant
swirling flows. The free surface shapes were also averaged over
1000 frames. We can see that the height of the dip, h, at the center
of the free surface �the maximum deflection of the free surface
from the horizontal at the central axis� is much smaller for surfac-
tant solutions than that for water and decreases slightly with in-
creasing surfactant concentrations �elasticity numbers�. The con-
crete value of h /H is listed in Table 2. In the present study,

although the elasticity number is very small, the elasticity still
plays an important role in the shape of the free surface and the
secondary flow pattern. Since the local Reynolds number for
CTAC 50 ppm is very close to that of Newtonian fluid flow, we do
not consider the decrease of the dip to be due to the decrease of
the local Reynolds number. The decrease of h /H with elasticity
number is the so-called Quelleffekt �30�. The sensitivity of the free
surface deformation with small elasticity in the open swirling flow
may be used as a simple method for the evaluation of DR ability
instead of the rheology measurement. A critical value of h /H may
exist for the judgment of the lowest viscoelasticity for the onset of
DR to overcome the difficulty in screening effective drag reducers
by use of a rheometer for the low viscoelasticity case.

To testify this conjecture, we measured the free surface shapes
of another three CTAC surfactant swirling flows with low mass
concentrations of 25, 30, and 40 ppm, respectively. Figure 5
shows the relationship of h /H with mass concentration Cm. Our
measured drag reduction data of CTAC/NaSal surfactant flow in a
two-dimensional channel flow at a Reynolds number of 4.3
�104 for different Cm are also shown in this figure. The values of
h /H and DR are the same as that of water for Cm
30 ppm. At a
critical value of Cm=40 ppm, the value of h /H decreases sud-
denly and the value of DR jumps from 0 to about 60%. This
suggests that the viscoelasticity of a 40 ppm CTAC surfactant
solution is a critical value for the onset of drag reduction at a
Reynolds number of 4.3�104, and this critical viscoelasticity can
be represented indirectly by the corresponding value of h /H in a
free-surface swirling flow. Since the elasticity of the CTAC solu-
tions is small, we did not observe the appearance of a bulge
around the center of the free surface even for the 1000 ppm sur-
factant solution. However, when we inserted a rod into the center
of the swirling flow of the 1000 ppm surfactant solution, we found
the rod-climbing Weissenberg phenomenon.

Figures 6�a�–6�d� show the radial distributions of the reduced
tangential velocities averaged over 100 dual frames. The experi-
mental conditions are listed in Table 1. The correlation lines are
also shown by use of a least square fitting method. For the water
case, the tangential velocities increase rapidly with increasing
r /Rw up to 0.46, decrease gradually with further increasing r /Rw
up to 0.80, and then increase again to a second peak adjacent to
the cylindrical wall, whereas for the surfactant solutions, the tan-

Fig. 4 Free surface shapes for water and surfactant solutions

Table 2 Values of free surface deformation h /H, SDT, and flow
dissipation ratio D /Dw

Water CTAC 50 ppm CTAC 200 ppm CTAC 1000 ppm

h /H 0.37 0.13 0.10 0.0
SDT�s� / 12.33 9.47 2.58
D /Dw

1 1.46 2.71 9.05

Fig. 5 Relationship of h /H with DR for Re=4.3Ã104
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gential velocities increase gradually in the radial outward direc-
tion except in the region near the periphery of the rotating disc
where the tangential velocities decrease for CTAC 50 ppm and
CTAC 200 ppm and increase rapidly for CTAC 1000 ppm. The
position of the maximum tangential velocity appears to move out-
ward with increasing surfactant concentration. For the water case,
the tangential velocity distribution is different from the numerical
calculation at a low Reynolds number �35� in which the tangential
velocity increases monotonically in the radial direction to a peak
near the cylindrical wall. From the secondary flow pattern shown
in Fig. 3�a�, we can see a very intensive inertia-driven vortex in an
anticlockwise direction which may intensify the momentum
change in the radial direction and then smear the peak near the
cylindrical wall. This is may be the reason that the maximum
tangential velocity appears at r /Rw=0.46 instead of a place near
the cylindrical wall for low Reynolds numbers.

Figure 7 shows the vertical tangential velocity profiles along
r /Rw=0.46. It can be seen that a large gradient of the tangential
velocities exists near the rotating disc. In the region away from the
bottom, the velocities for water, CTAC 50 ppm, and CTAC
200 ppm show uniform distribution, which agrees with the well-
known Taylor-Proudman theorem, whereas the velocities for
CTAC 1000 ppm decreases from z /H=0.53 to 0.63 and then lev-
els off. Since the Taylor-Proudman theorem assumes that the in-
ertial term and viscous term in the Navier-Stokes equation in a
rotating reference frame are much smaller compared to the Cori-
olis acceleration term and the reduced pressure gradient term in-
cluding the centrifugal acceleration and the body force, the swirl-
ing flows of water and the surfactant solution with low effective
viscosities may satisfy the Taylor-Proudman theorem, whereas
that of the surfactant solution with high effective viscosities may
not obey it. The tangential velocities are lower than that of water
and decrease with increasing elasticity number. Combining this
with Figs. 3�a�–3�d�, we can see that the elasticity leads to a weak

motion of the swirling flow in both the tangential direction and the
meridional plane. This is considered to be due to the addition of
elastic dissipation compared to the Newtonian swirling flow in
which the main dissipation is viscous dissipation. The viscoelastic
dissipation of the swirling flow can be estimated by the following
expression:

D =�
0
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��2�� �Uz
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where V is the volume of the swirling flow domain. The measured
tangential velocities were interpolated or extrapolated for the dis-
sipation calculation with Eq. �3�. The ratio of the solution flow

Fig. 6 Radial distributions of the time-averaged tangential velocities

Fig. 7 Vertical tangential velocity profiles along r /Rw=0.46
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dissipation to the water flow dissipation is listed in Table 2. We
can clearly see that the dissipation is larger for the surfactant
solutions and increases with increasing surfactant concentration.
Therefore, the weakening of the secondary motion and decrease of
the tangential velocities with elasticity number further supports
the observation that the elasticity in the surfactant solutions plays
an important role. Our numerical simulations �35� also show the
same phenomenon of elasticity weakening the swirling flow. For a
laminar swirling flow at low Reynolds numbers, the dissipation
obtained from Eq. �3� equals the input power for the rotation. If
the input torque is measured, the effective shear viscosity of the
surfactant solution may be obtained.

The momentum equation in the radial direction can be ex-
pressed as

�Ur
�Ur

�r
+ �Uz

�Uz

�z
= −

�p

�r
+

1

r

�

�r
�r�rr� −

���
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�U�
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where N1=���−�rr and N2=�rr−�zz are first and second normal
stresses, respectively. We consider that the swirling flow near the
cylindrical wall has a large shear rate of �̇r�=r�� /�r��U� /r� for
resulting in large N1 and N2. The relationship between the first and
second normal stresses and shear rate can be expressed as

N1 = 1�̇r�
2 , N2 = 2�̇r�

2 �5�

where 1 and 2 are first and second normal stress coefficients,
respectively, and can be expressed by the Giesekus model as �36�

1

2�0
=

f�1 − �f�
�G�̇r�

2 ��1 − f�
,

2

�0
=

− f

�G�̇r�
2 �6�

where

f =
1 − x

1 + �1 − 2��x
and x2 =

�1 + 16��1 − ����G�̇r��2 − 1

8��1 − ����G�̇r��2 .

Then we have

N2

N1
= −

1 − f

2�1/� − f�
�7�

In our present study, the mobility factor � has a very small value
of 0.003, so N2 is very small compared to N1 and can be neglected
here. For the case of CTAC 1000 ppm, the free surface is almost
flat, so we can further assume that the variation of pressure in
radial direction can be neglected. Therefore, from Eq. �4� we can
see that the competition between first normal stress N1 and inertial
force term �U�

2 determines the appearance of inertia-driven and
elasticity-driven vortices. Figure 8 shows the ratio of N1 to �U�

2

along an axial line of r /Rw=0.91 adjacent to the cylindrical wall
for the 1000 ppm surfactant solution. It can be seen that for z /H

�0.6, �U�
2 is larger than N1 to generate an inertia-driven vortex,

whereas for z /H�0.6, N1 is larger than �U�
2 to generate an

elasticity-driven vortex. This theoretical analysis agrees with the
secondary flow pattern shown in Fig. 3�d� where an arrow indi-
cates the place of z /H=0.6 adjacent to the cylindrical wall.

It is generally considered that the swirling flow of viscoelastic
solution moves in the opposite direction of the rotation after the
outer force is removed and the swirl decay time �SDT� can be
used to identify the viscoelasticity. In this study, the SDT was
measured as the difference between the time at which the rotating
disc was stopped and the time when the solution stopped before
starting to recoil by use of a stopwatch. The SDT was measured
three times and the average values were used as the experimental
data. Recoil was observed for all three surfactant solutions and
Table 2 lists the measured SDT values. We can see that the SDT
decreases with surfactant concentration, indicating that the vis-
coelasticity increases with surfactant concentration. This is con-
sistent with the results of the elasticity numbers listed in Table 1
and further supports that the decrease of h /H with surfactant con-
centration is caused by viscoelasticity of the solution. The evolu-
tion of the tangential velocities of the solution was also measured
after the rotating disc was stopped. Figure 9 shows the time evo-
lution of the normalized tangential velocities for CTAC 50 ppm at
z /H=0.70 and r /Rw=0.11, 0.46 and 0.80. The time was obtained
from the photograph acquisition rate and the sequence numbers of
the dual frames of PIV images. We can clearly see the decrease of
tangential velocity with the elapse of time and the solution started
to recoil with the velocity becoming negative at t=12 s. This time
agrees with the SDT measurements listed in Table 2. Since the
velocity at the larger radius is large for easy recognition, in the
SDT measurements the recoil process was assumed to start when
the solution at the outer radius was observed to start to move in
the opposite direction. As expected, the tangential velocity de-
creases with decreasing r /Rw. The surfactant solution stopped its
motion after about 30 s relative to the start-up time of recoil, and
the time is shorter for the higher surfactant concentrations. Figure
10 shows the time evolution of the normalized tangential veloci-
ties for CTAC 50 ppm at r /Rw=0.80 and z /H=0.01, 0.42, and
0.70. We can see that there is no great axial-direction dependence
of the tangential velocity during the vortex decay and recoil pe-
riod except at z /H=0.01 where the effect of the stationary disc
results in a smaller tangential velocity.

Fig. 8 Comparison of N1 and �U�
2 along r /Rw=0.91

Fig. 9 Time evolution of the tangential velocities at different
radial positions after the rotating disc was stopped
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Conclusions
An experimental investigation was conducted on the swirling

flows of water and dilute CTAC surfactant solutions in an open
disc-cylinder system by use of a double-pulsed PIV system. Ob-
tained were the free surface shape, the secondary flow pattern in
the meridional plane and the tangential velocities, swirl decay
time, and tangential velocity evolution after the rotating disc was
stopped. The main conclusions may be summarized as follows:

1. For the water flow, vortex breakdown at high Reynolds
numbers resulted in a large counter-vortex at the center part,
and the inertia-driven vortex was pushed to the top-right
corner near the intersection of the free surface and the wall.

2. Despite the very small elasticity number, the elasticity of the
CTAC surfactant solutions greatly affected the free surface
shape and the secondary flow pattern in the meridional
plane, which was different from in the closed disc-cylinder
system. The maximum depression of the free surface, h, de-
creased with elasticity number.

3. Elasticity resulted in the decrease of the tangential velocities
and the weakness of the secondary vortex flow compared to
the Newtonian swirling flow.

4. Measurements of swirl decay time and tangential velocity
evolution after the rotating disc was stopped showed that the
investigated surfactant solutions had viscoelasticity and in-
creased with surfactant concentration, which was consistent
with the elasticity number obtained by combining the mea-
sured shear viscosity with the Giesekus model.

5. The open cylindrical swirling flow was sensitive to elasticity
and the maximum depression of the surface h /H may be
used as a simple indexer for determining the viscoelasticity
of surfactant solutions required for the onset of turbulent
friction drag reduction to overcome the difficulty of screen-
ing an effective low viscoelastic drag reducer by use of rheo-
logical measurements.
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Nomenclature
C � concentration, ppm
D � flow dissipation, W
E � elasticity number

Fr � Froude number
g � gravitational acceleration, m/s2

h � the dip of the free surface at the center, m
H � the height of the fluid filled into the cylinder,

m
N1 � first normal stress
N2 � second normal stress

p � pressure, Pa
r � coordinate in radial direction, Fig. 1
R � radius, m

Re � Reynolds number
U � velocity, m/s
v � volume, m3

V � volume, m3

z � coordinate in axial direction of the cylinder,
Fig. 1

Greek Symbols
� � mobility factor
�̇ � shear rate, 1/s
� � shear viscosity, Pa s

1 � first normal stress coefficient
2 � second normal stress coefficient
� � relaxation time, s
� � angular velocity of the rotating disc, 1/s
� � density, kg/m3

� � stress, Pa

Subscripts
0 � zero shear strain rate
d � rotating disc
G � Giesekus model
m � mass
r � radial direction

w � cylindrical wall
z � axial direction
� � tangential direction
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Swirling Flow of a Viscoelastic
Fluid With Free Surface—Part II:
Numerical Analysis With
Extended Marker-and-Cell
Method
In Part I [Wei et al., 2004, 2004 ASME Int. Mech. Eng. Conference], we presented the
experimental results for swirling flows of water and cetyltrimethyl ammonium chloride
(CTAC) surfactant solution in a cylindrical vessel with a rotating disk located at the
bottom for a Reynolds number of around 4.3�104 based on the viscosity of solvent. For
the large Reynolds number, violent irregular instantaneous secondary flows at the me-
ridional plane were observed by use of a particle image velocimetry system. Because of
the limitations of our computer resources, we did not carry out direct numerical simula-
tion for such a large Reynolds number. The LES and turbulence model are alternative
methods, but a viscoelastic LES/turbulence model has not yet been developed for the
surfactant solution. In this study, therefore, we limited our simulations to a laminar flow.
The marker-and-cell method proposed for Newtonian flow was extended to the viscoelas-
tic flow to track the free surface, and the effects of Weissenberg number and Froude
number on the flow pattern and surface shape were studied. Although the Reynolds
number is much smaller than that of the experiment, the major experimental observa-
tions, such as the inhibition of primary and secondary flows and the decrease of the dip
of the free surface by the elasticity of the solution, were qualitatively reproduced in the
numerical simulations. �DOI: 10.1115/1.2136929�

Introduction
The phenomenon studied in this paper is related to the Weis-

senberg effect and called Quelleffekt as mentioned in Part I �1�.
Quelleffekt was studied two decades ago for relatively elastic flu-
ids at small Reynolds numbers, the most important reports being
those of Bohme et al. �2� and Devvat and Hocq �3� for silicon oil
and a 2.5% polyacrymide aqueous solution. Their experimental
and numerical simulations show that the viscoelastic fluid in a
cylindrical vessel flows upwards along the axis of symmetry and
produces a bulge in the free surface around the axis when the fluid
is driven by a rotating disk at the bottom of the vessel. Xue et al.
numerically studied the effect of small amounts elasticity on the
flow pattern for the confined flow �4�. Siginer and his co-workers
�5–13� first connected the free surface shape with rheological pa-
rameters in the viscoelastic constitutive equation for the viscoelas-
tic liquid.

We did not observe the bulge in our experiments because of the
lower elasticity of the CTAC surfactant solution compared to sili-
con oil and polyacrymide aqueous solution and the extremely
large inertial force at the large Reynolds number. To our knowl-
edge, the effects of elasticity on the flow pattern and free surface
shape of the swirling flow at a large Reynolds number and small
elasticity have not been reported. Those effects were measured
experimentally in Part I �1� and are numerically analyzed herein
utilizing a viscoelastic Giesekus model.

One of the key issues in the simulation is the proper modeling
of the free surface. Several numerical techniques have been de-
veloped to deal with free surface flows; for example, the surface

height method �14�, marker-and-cell �MAC� method �15�,
volume-of-fluid �VOF� method �16�, and level-set method �17�.
The MAC method is a simple and effective technique in which
Lagragian marker particles are advected at the velocity of the
local fluid, with their distribution determining the instantaneous
fluid configuration. The method was designed for Newtonian fluid
and has been successfully used in solving a wide range of com-
plex free surface problems. Recently, Tomes et al. �18� applied the
MAC technique for the first time to viscoelastic free surface flows
in a two-dimensional Cartesian coordinate and achieved satisfac-
tory solutions. In this study, we further extended the MAC method
to calculate the viscoelastic axisymmetric swirling flow.

Numerical Method
The flow was described in detail in Part I �1� and is sketched in

Fig. 1 herein. The fluid is enclosed in a circular cylinder having
radius R, and a disk at the bottom rotates with a constant angular
velocity. The radius of the rotating disk is assumed to be equal to
that of the cylindrical vessel. Shear thinning and elasticity are two
important properties influencing the flow behavior of the surfac-
tant solution when its concentration is larger than a certain value
�19�, which can be well described by a Giesekus model �20� as
shown in Part I. The governing equations of Giesekus fluids can
be written as follows:

Continuity equation:

� · u = 0 �1�
Momentum equation:

�
Du

Dt
= − �P + ��u + � · � + �g� �2�

Constitutive equation:
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� + �� ��

�t
+ u · �� − � · �u − �uT · � +

�

�
� · �� = ���u + �uT�

�3�

where �, �, �, and � are the relaxation time, solvent viscosity,
surfactant contribution to the zero-shear-rate solution viscosity,
and mobility factor, respectively. The Giesekus model reduces to
an Oldroyd-B model �21� by setting � equal to zero. By introduc-
ing the following dimensionless variables

u* = u/�	R�, x�* = x�/R, �* = �/��	�, P* = p/��	2R2�

Re = �	R2/�, We = �	, Fr = 	2R/g, t* = t	, 
 = �/�

the governing equations can be written in dimensionless form as

� · u = 0 �4�

Du

Dt
= − �P +

1

Re
�u +




Re
� · � +

1

Fr

g�

g
�5�

��

�t
+ u · �� =

1

We
��u + �uT� −

1

We
� + � · �u + �uT · � − �� · �

�6�

For simplicity, the superscript *’s in the above nondimensional
equations were dropped.

In the experiments, the flows were three-dimensional turbulent
ones. DNS could not be carried out for a Reynolds number as high
as 4.3�104 and LES/turbulence viscoelastic models have not yet
been developed. Therefore, we limited our simulations to laminar
flows, which can be assumed to be axisymmetric. The axisymmet-
ric swirling flow had ten unknown variables �three velocity com-
ponents, pressure, and six extra viscoelastic stresses� to be solved.
The full components of the Giesekus model for axisymmetric
swirling flow were not readily found in a textbook and therefore
we worked them out as follows:

Continuity equation:

1

r

�rur

�r
+

�uz

�z
= 0 �7�

Momentum equation:

�ur

�t
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�p

�r
+

1

Re
�1
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�uzuz
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Giesekus constitutive equation:
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It can be seen that there are five important dimensionless numbers
in the above equations to characterize the Quelleffekt flow: Rey-
nolds number Re, Froude number Fr, Weissenberg number We,
viscosity ratio 
, and mobility factor �.

Fig. 1 Sketch of the disk-cylinder swirling flow system
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Special attention should be paid to the treatment of the free
surface. In this study, in which surface tension is neglected, the
boundary conditions at the free surface are the disappearance of
normal and tangential stresses as follows:

n · � · n = 0 �17�

m · � · n = 0 �18�

where n and m are the local unit normal and tangential vectors.
Equations �17� and �18� can be rewritten as

P =
nrnr

Re
�2�ur

�r
+ 
�rr� +

2nrnz

Re
� �uz

�r
+

�ur

�z
+ 
�rz�

+
nznz

Re
�2�uz

�z
+ 
�zz� �19�

nrnz

Re
�2� �ur

�r
−

�uz

�z
� + 
��rr − �zz�� +

nznz − nrnr

Re

�� �uz

�r
+

�ur

�z
+ 
�rz� = 0 �20�

In order to apply these conditions we divide the surface conditions
into four types.

�a� Horizontal surfaces: These surfaces are identified by surface
cells having only one side contiguous with empty cells, and the
normal vector is n= �0,1�. Then, Eqs. �19� and �20� reduce to

P =
1

Re
�2�uz

�z
+ 
�zz� �21�

�uz

�r
+

�ur

�z
+ 
�rz = 0 �22�

�b� Vertical surfaces: These surfaces are identified by surface
cells having only one side contiguous with empty cells, and the
normal vector is n= �1,0�. Then we have

P =
1

Re
�2�ur

�r
+ 
�rr� �23�

� �uz

�r
+

�ur

�z
+ 
�rz� = 0 �24�

�c� 45 deg slope surface cells: The surfaces are identified by
surface cells having two adjacent faces contiguous with empty
cells. For these cells, the normal vector is assumed to make
45 deg with the axes, i.e., n= �±1/	2, ±1/	2�. For the surface
with top and right empty cells, the normal vector is assumed to be
n= �1/	2,1 /	2� and we have

P =
1

2 Re
�2�ur

�r
+ 
�rr� +

1

Re
� �uz

�r
+

�ur

�z
+ 
�rz�

+
1

2 Re
�2�uz

�z
+ 
�zz� �25�

2� �ur

�r
−

�uz

�z
� + 
��rr − �zz� = 0 �26�

For the surface with bottom and right surfaces, we assumed the
normal vector n= �1/	2,−1/	2� and then we have

Fig. 2 Secondary flow patterns of a confined swirling flow. „a…
Inertia-driven vortex of Newtonian flow „Re=100 and a=1.0…
and „b… elasticity-driven vortex of viscoelastic flow „Re=100,
We=1.0, �=1.0, �=0 and a=1.0….

Fig. 3 The total normal pressure exerted on the top disk
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Fig. 4 Secondary flows at various Weissenberg numbers and Re=100, Fr=100, �=1, �=0, and a=1.0

Fig. 5 Contours of the tangential velocity. „a… Newtonian fluid Re=100, Fr=100, and a=1.0; „b… We=0.3, Re=100, Fr=100, �=1,
�=0 and a=1.0; and „c… We=1.0, Re=100, Fr=100, �=1, �=0, and a=1.0
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For the surface with bottom and left surfaces, we assumed the
normal vector n= �−1/	2,−1/	2� and then we have
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For the surface with top and left surfaces, we assumed the normal
vector n� = �−1/	2,1 /	2� and then we have
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Fig. 6 Tangential velocities at z=0.2

Fig. 7 Transient process of the development of the vortex of viscoelastic flow at Re=100, Fr=100, We=1.0, �=1.0, �=0, and a
=1.0 from a static state
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�d� Surfaces with three sides or two opposite sides contiguous
with empty cells: For these cases, the pressure is set to zero and
adjust at least one velocity on the empty cell faces to satisfy the
mass conservation.

A second-order finite difference scheme similar to that of
Tomes et al. �18� was used to discretize the governing equations.
An explicit method was used for time advancement and the nu-
merical procedure is referred to Tomes et al. �18�

Results and Discussions
A number of experiments and numerical simulations have been

carried out for confined swirling flows of Newtonian and vis-
coelastic fluids �22,23�. The results show that for Newtonian flow,
an outward centrifugal force at the meridional plane causes the
fluid near the rotating disk to flow radially outward, up the side-
walls of the cylindrical vessel, inward along the top, and finally
down near the center, whereas for a highly elastic fluid, an oppo-
site secondary flow is generated by the rotation of the disk due to

the induced normal stresses in the fluid. Usually the vortex caused
by centrifugal force is called an “inertia-driven vortex” and that
due to elasticity is called an “elasticity-driven vortex.” In order to
validate our code, we first made calculations for the confined
swirling flows of Newtonian fluid �Re=100 and a=1.0� and a
relatively elastic Oldroyd-B fluid �Re=100, We=1, 
=1.0, �
=0.0, and a=1.0�. Figure 2 shows the secondary flows in the
disk-cylinder system, in which the top disk and the sidewall of the
cylindrical vessel are stationary and the bottom disk rotates at a
constant angular velocity. It is clearly seen that the inertia-driven
vortex and elasticity-driven vortex are reproduced by our code.
Figure 3 shows the total normal pressure at the top stationary disk.
It can be seen that the total pressure exerted on the top disk is
larger near the sidewall than near the axis for Newtonian flow.
Thus, if we remove the top disk we would expect the fluid to rise
near the sidewall and dip near the axis. For the elastic fluid, the
total pressure is larger near the axis, thus a bulge would be pro-
duced in the free surface around the axis when the disk is re-

Fig. 8 Secondary flows at various Reynolds numbers with We=0.5, Fr=100, �=1.0, �=0, and a=1.0 for viscoelastic flow
†„a…, „b…, and „c…‡ and Fr=100 and a=1.0 for Newtonian flow „d….
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moved. The numerical total pressure distributions are consistent
with the analyses of the rod-climbing effect in �24�. Figures 2 and
3 validate our code. We checked the grid resolution using three
sets of meshes with grid size of 1 /20, 1 /40, and 1/80 in each
direction, respectively, and found that the grid size of 1 /40 is
enough to obtain a grid-independent solution.

Next, we discuss free surface calculation. The fluid motion in
the swirling flow system with aspect ratio a=1.0 is studied. The
flow pattern and surface shape are affected by five important pa-
rameters: �1� Weissenberg number, �2� Reynolds number, �3�
Froude number, �4� viscosity ratio 
, and �5� mobility factor �.
Following is a systematic explanation of these effects.

(1) Effect of Weissenberg number: Elasticity is often repre-
sented by a Weissenberg number, which is defined as the ratio of
relaxation time to the characteristic time of the fluid. Generally,
the larger the Weissenberg number, the more important the role
that elasticity plays. In this section, four Weissenberg numbers
We=0.01, 0.3, 0.5, and 1.0 were studied with other parameters set
as Re=100, Fr=100, 
=1.0, �=0.0, and a=1.0.

Elasticity number E �E=We/Re� is another important nondi-
mensional number defined as the ratio of the elastic force to the
inertial force, which is independent of angular velocity. In the
present study, E varies from 0.0001 to 0.01, which is almost the
same range as that in Part I.

Figure 4 shows the secondary flows of various Weissenberg
numbers at the meridional plane; the results of Newtonian flow
are also included for comparison. The effects of the Weissenberg
number on flow pattern and surface shape are clearly seen. First,
the flow patterns of the Newtonian flow and viscoelastic flow with
We=1.0 are, respectively, the same as those in Figs. 2�a� and 2�b�;
the magnitudes of velocity vectors do not have any apparent
change when the top stationary disk is replaced by a free surface.
The striking change is seen in the eventual curving of the flat
liquid surfaces. The surface shapes of Newtonian flow and the
high elastic flow �We=1.0� are completely different: a dip is
formed in Newtonian fluid while a bulge is produced in the high
elastic fluid near the axis. The surface shapes are consistent with
the radial distribution of total pressure in Fig. 3. Secondly, the
specific flow pattern and surface shape depends on the balance
between the inertial force �Re�, elastic force �We or E�, and grav-
ity force �Fr�. In Fig. 4�a�, the flow is controlled by inertia and
gravity and an inertia-driven vortex is produced. In Figs.

4�b�–4�e�, normal stresses are introduced and the fluid motion is
affected by elasticity. Since the Froude number is fixed, a com-
petitive process between the inertial force and elastic force is
seen. In Fig. 4�b�, the elasticity number is 0.0001 and inertia
dominates the flow field. “Newtonian-like flow” is seen, but the
strength of the secondary flow field is dramatically suppressed.
When the Weissenberg number is increased to 0.3 �E=0.003�, 30
times as large at that in Fig. 4�b�, an elastic-driven small reverse
vortex develops at the outward edge of the rotating disk and the
inertia-driven vortex is pushed upward and inward. With the in-
crease of the Weissenberg number to 0.5 the small elasticity-
driven vortex grows and with further increase of We to 1.0, the
inertia-driven vortex diminishes and the entire domain becomes
occupied by the elasticity-driven vortex. Note that when the Weis-
senberg number is increased from 0.01 to 0.5, the secondary flow
becomes weaker. The inhibition of vortex motion at the meridi-

Fig. 9 Effect of Froude number on the free surface at Re=100, We=0.5, �=1.0, �=0.0, and a=1.0

Fig. 10 Secondary flow at Re=100, Fr=100, We=0.3, �=3.0,
�=0.0, and a=1.0
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onal plane agrees with the experimental findings �1�. With further
increase of the Weissenberg number to 1.0, the secondary flow
increases slightly. At a small Weissenberg number �E=0.0001�,
the free surface pattern is the same as that of Newtonian flow and
the depth of the dip in the free surface is almost the same as that
of Newtonian flow. With the increase of the Weissenberg number
the dip depth decreases and finally a bulge is produced near the
axis and a dip is generated near the sidewall, indicating that elas-
ticity plays an important role in the shape of the free surface,
which is in agreement with the experiment �1�.

Figure 5 shows the contours of the tangential velocity at the
meridional plane. The contour values range from 0.05 to 0.8 and
the interval is 0.05. It is clear that elasticity generally weakens the
primary flow; the larger the Weissenberg number, the smaller the
tangential velocity. The weakened primary flow with the increase
of elasticity has been measured in the experiments �1�. The bound-
ary layer becomes thinner with the increase of the Weissenberg
number, leading to a larger viscous frictional drag. Figure 6 shows
the tangential velocity versus radius at z=0.2 where it becomes

Fig. 11 Secondary flows at various mobility factors and Re=100, We=1.0, Fr=100, �=1, and a=1.0

Fig. 12 Evolution of the minimal tangential velocity after the
stop of the rotating disk
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clearer that the tangential flow is inhibited by elasticity. Compared
to Newtonian flow, the tangential velocities of viscoelastic flows
first increase gradually and then decrease gradually and their
peaks shift inward toward the axis. In the experiment, there are
two tangential velocity peaks along radial direction for Newtonian
fluid due to the effect of the high-Reynolds number. With addition
of surfactant additives, it was found that the velocity peak near the

axis vanishes and the other peak shifts toward the axis �1�. The
shift is in agreement with the numerical simulation.

Figure 7 shows the transient process of the development of the
vortex of viscoelastic flow at We=1.0 from a static state. It can be
seen that the swirling free surface flow experiences a complex
flow process. Below t=0.4, the flow is weak and the secondary
flow is inertia driven. At t=0.8, a small elasticity-driven vortex is

Fig. 13 Contours of the tangential velocity at Re=100, We=1, Fr=100, �
=1, �=0.003, and a=1.0
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generated at the outward edge of the rotating disk that increases
gradually and finally occupies the entire field. When t is less than
2.0, inertial and elasticity forces are weak and gravity is the larg-
est force. The gravity force counteracts the inertia-driven and
elasticity-driven vortex, producing a flat free surface. However,
when t is larger than 2.5, the elasticity force plays the most im-
portant role and a bulge is produced at the region near the axis.
Finally a steady solution is obtained as shown in Fig. 4�e�.

(2) Effect of Reynolds number: Three Reynolds numbers Re
=10, 100, and 5000 were studied with other parameters set as
We=0.5, Fr=100, 
=1.0, �=0.0, and a=1.0. Note that for Re
=5000, the flow becomes unstable and it is not possible to achieve
a steady converged solution. The secondary flows of various Rey-
nolds numbers at the meridional plane are shown in Fig. 8. It can
be seen that the larger the Reynolds number, the more
“Newtonian-like” the flow pattern and surface shape become, due
to the larger inertial force. One instantaneous snapshot of the sec-
ondary flow of the Newtonian fluid at Re=5000 and a=1.0 is also
shown in Fig. 8. It can be seen that the one-vortex structure in Fig.
4�a� breaks into two counter-rotating vortices at the much higher
Reynolds number. The inertia-driven vortex is pushed toward the
sidewall with the vortex center shifted upward. This breakdown
phenomenon at the high Reynolds number qualitatively agrees
with the experiment �1�. In the experiment the Reynolds number
is higher and the inertial vortex is pushed further upward and
outward. Both the numerical simulation and experiment show that
the strength of the inertia-driven vortex is much stronger than the
counter-rotating vortex.

(3) Effect of Froude number: Froude number is defined as the
ratio of inertial force to gravitational force. It is found that the
Froude number does not change the flow pattern, but greatly af-
fects the free surface. The dip of the free surface shape decreases
with the decrease of the Froude number as shown in Fig. 9. This
indicates that the gravity can effectively prevent deformation of
the free surface when it is much larger than the inertial and elastic
forces.

(4) Effect of viscosity ratio �: Kawaguchi et al. �19� show that
the larger the concentration of the CTAC solution, the larger the
apparent shear viscosity and relaxation time. In section �1� we
described the effect of relaxation time � Weissenberg number�; in
this section, the effect of viscosity due to surfactant additives is
described. By increasing the viscosity ratio 
 from 1.0 to 3.0, the
secondary flow �Fig. 4�c�� is significantly weakened, as shown in
Fig. 10. The free surface shape completely changes as the dip of
the free surface near the axis becomes a bulge. The azimuthal
velocities are also suppressed �not shown�. It can be seen that the
increase of the viscosity ratio is somewhat equal to the increase of
the Weissenberg number.

(5) Effect of mobility factor on the flow pattern and surface
shape: Figure 11 shows the flow motions at different mobility
factors. It is seen that mobility factor also greatly affects the flow
pattern and dip height. For a mobility factor �=0.01, the dip
height is smaller than that of Newtonian fluid; with the decrease
of mobility factor the dip height decreases, and a bulge is repro-
duced near the axis at �=0. The flow patterns at �=0.01 and �
=0.003 are respectively similar to those of Figs. 4�c� and 4�d�.
This indicates that the increase of mobility factor is somewhat
equivalent to a decrease of elasticity.

Figure 12 shows the evolution of the minimal tangential veloc-
ity starting from the stop of the rotating disk. For small elasticity
We=0.1, though there is an opposite flow at the very beginning
after the stop, it lasts very short time. Actually the opposite flow
occurs only in the region very near the bottom disk and soon
vanishes. The larger the Weissenberg number, the larger the mini-
mal tangential velocity �absolute value� and the recoil process
lasts a longer period. Figure 12 also shows that the increase of the
mobility factor suppresses the recoil process. A recoil process at
Re=100, We=1.0, Fr=100, 
=1, �=0.003, and a=1.0 is shown
in Fig. 13. It is seen that the opposite flow first occurs in the near

wall region and then it spreads to most of the fluid region. When
the rotating disk stops, the velocity gradient �u� /�z at the bottom
disk changes from negative value to positive value which makes
an abrupt change of �
 /Re�����z /�z�. Due to the change of the
elastic stress, recoil flow first occurs in the region near the bottom
disk.

Figures 14 and 15 respectively show the evolution of tangential
velocities at different radial and axial positions. It is seen clearly
that the swirl decay time �SDT� differs greatly with respect to
positions, while in the experiments a SDT almost independent of
locations is found �1�. The almost constant SDT in the experi-
ments means the spread of the recoil process from bottom disk to
entire flow region is very fast. The different SDT feature is quite
probably due to the effect of Reynolds number, etc.

Finally, we summarize the relationship between the DR rate,
Quelleffekt, recoil process, and rheological properties in Fig. 16.
The present numerical simulations and previous direct numerical
simulation �DNS� results �25–27� show that Quelleffect and recoil
process and drag-reduction rate are strongly dependent on the

Fig. 14 The evolution of the tangential velocities at different
radial position after the stop of the rotating disk at Re=100,
We=1, Fr=100, �=1, �=0.003, and a=1.0

Fig. 15 The evolution of the tangential velocities at different
axial position after the stop of the rotating disk at Re=100,
We=1, Fr=100, �=1, �=0.003, and a=1.0

Fig. 16 The relationship between rheological parameters and
Quelleffekt, recoil, and drag reduction rate
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rheological parameters of the solution. The present numerical tests
have shown that generally the larger the relaxation time, the
smaller the mobility factor, and the larger the 
 value, the smaller
the dip height. On the other hand, DNS results �25–27� show that
the larger the elasticity, the smaller the mobility factor, and the
larger the 
 value, the larger the drag-reduction �DR� rate. There-
fore a preliminary judgment can be made that the smaller the dip
height, the larger the DR ability. This is in agreement with the
report of Wei et al. �1� which experimentally found that the DR
rate is related to the dip height; the onset of drag-reduction occurs
after a critical dip height. We can also connect DR rate with the
recoil process. Generally the stronger the recoil motion, the larger
DR capability the solution may possess.

Conclusion
Numerical simulations were performed for the swirling flows of

Newtonian and viscoelastic fluids in a cylindrical vessel with a
rotating disk at the bottom. The MAC method was extended to
axisymmetric swirling viscoelastic flows. The effect of Weissen-
berg number, Reynolds number, Froude number, surfactant-
induced viscosity, and mobility factor were systematically studied.
The primary conclusions are summarized as follows. The MAC
method can successfully solve axisymmetric viscoelastic flows.
The experimentally observed vortex breakdown of Newtonian
flow at a large Reynolds number is validated by numerical simu-
lation. The flow pattern and surface shape are greatly dependent
on the balance between inertial force, elastic force, and gravity.
Elasticity weakens both the primary and secondary flows and
makes the boundary thinner, which qualitatively agrees with the
experimental results. With the increase of elasticity, the dip of the
free surface near the axis decreases and for highly elastic fluid a
bulge is generated. For small inertial and elastic forces, gravity
can counteract both the inertial motion and elastic motion, thus
preventing surface deformation. The dip height can be utilized to
preliminarily judge the DR capability of a surfactant solution.
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Nomenclature
a  aspect ratio=H /R
E  elasticity number=�� /�R2

Fr  Froude number=	2R /g
g  gravitational constant, m/s2

H  height of fluid in cylindrical vessel at static
state, m

m  local unit tangential vector
n  local unit normal vector
p  pressure, Pa
r  radial coordinate
t  time, s

R  radius of the cylindrical vessel radius of the
rotating disk, m

Re  Reynolds number=�	R2/�
u  velocity �m/s�

We  Weissenberg number=�	
z  axial coordinate

Greek Symbols
�  mobility factor

  viscosity ratio=� /�
�  dynamic viscosity of surfactant contribution,

Pa s
�  relaxation time, s
�  dynamic shear viscosity of solvent, Pa s

�  tangential coordinate
�  density of the solution, kg/m3

�  stress tensor
�  extra stress due to surfactant
	  angular velocity, 1/s
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Swirling Flow of a Viscoelastic
Fluid in a Cylindrical Casing
The swirling flow of a viscoelastic fluid in a cylindrical casing is investigated experimen-
tally, using aqueous solutions of 0.05–1.0 wt . % polyacrylamide as the working fluid.
The velocity measurements are made using laser Doppler anemometer. The aspect ratios
H /R (H: axial length of cylindrical casing; R: radius of rotating disk) investigated are
2.0, 1.0, and 0.3. The Reynolds numbers Re0 based on the zero shear viscosity and the
disk-tip velocity are between 0.36 and 50. The velocity measurements are mainly con-
ducted for the circumferential velocity component. The experimental velocity data are
compared to the velocity profiles obtained by numerical simulations using Giesekus
model and power-law model. It is revealed that at any aspect ratios tested the dimen-
sionless circumferential velocity component V�� decreases with increasing Weissenberg
number We. Both the Giesekus and power-law models could predict the retardation of
circumferential velocity fairly well at small We. The extent of the inverse flow region,
where the fluid rotates in the direction opposite to the rotating disk, is clarified in detail.
�DOI: 10.1115/1.2136925�

Keywords: viscoelastic fluid, rotating disk, flow visualization, LDV, power-law model,
Giesekus model

Introduction
The confined swirling flows of viscoelastic fluids are commonly

encountered in process engineering industries. There have been
many investigations concerning the swirling flow of viscoelastic
fluids induced by the rotation of a disk in a cylindrical casing. One
of the earliest experimental works was performed by Hill �1�, and
recently, Day et al. �2�, Escudier and Cullen �3�, Stokes and Boger
�4�, and Stokes et al. �5,6� have published comprehensive experi-
mental studies. Theoretical or numerical calculations for these
flows have also been conducted by using a variety of rheological
models �7–10�.

The present authors have studied this flow field by applying
flow visualization techniques and numerical simulations �11–14�.
A good agreement was obtained between the simulation results
and experimental ones within a range of relatively small Weissen-
berg numbers. Moreover, it was found that, when the elasticity
number was large, the fluid in the vicinity of the central axis was
rotating in the direction opposite to that of the rotating disk. Since
the velocity measurements in our previous experiments were con-
ducted using particle tracking velocimetry with a relatively thick
�3–5 mm� slit light source, the precise velocity distributions could
not be determined at the region of large velocity gradient �near the
rotating disk�.

In the present work, velocity measurements using a laser Dop-
pler velocimeter �LDV� were carried out to provide experimental
data that would be useful for the validation of various constitutive
equations. Comparison was made between the experimental and
calculated results using the Giesekus and power-law models. Fur-
thermore, the structures of reverse flows near the central axis were
closely examined.

Experimental Apparatus and Procedure
The experimental apparatus used in the present work is shown

in Fig. 1. The main body consists of a rotating disk enclosed in a
casing. The surface of the rotating disk is smooth, and the outside
diameter of the disk is 180 mm �R=90 mm�. The disk is painted

black to reduce the effect of reflected light. The distance H be-
tween the casing end wall and the rotating disk can be changed by
adjusting the thickness of the disk, and the aspect ratio H /R was
set at 0.3, 1.0, and 2.0. The disk is driven by a motor and decel-
erator with an inverter control. The clear acrylic casing is cylin-
drical with an inner diameter of 181 mm. The exterior is rectan-
gular, with a length on one side of 215 mm, to minimize the effect
of light refraction while observing cross sections.

Aqueous solutions of 0.025–1.0 wt. % polyacrylamide �Sanfloc
AH70P, molecular weight of two to four million, Sanyo Kasei
Kogyo, Ltd.� were used as the working fluid. Measurements of the
shear viscosity � and the first normal stress difference N1 of the
working fluid were conducted using a cone-and-plate-type vis-
cometer �Tokimec, Visco-Eld, cone angle 1.34 deg, radius
24.0 mm� and cone-and-plate-type rheometer �Rheology, MR-
500, cone angle 2.04 deg, radius 20.0 mm�. The uncertainty inter-
vals of the data for � and N1 are 5% and 7%, respectively, of their
absolute values.

Velocity measurements were made with a four-beam two-color
LDV system manufactured by KANOMAX Japan Inc. The light
source was an Argon laser with an output power of 300 mW. Two
Bragg acoustic-optic cells were used to shift the frequency of the
light beams. The LDV system was of backscattered fringe mode.
The size of the measuring volume was 74 �m dia and 0.89 mm in
length. Signal processing was performed by digital signal proces-
sors �KANOMAX 8007-IBM�. A fiber probe with a focusing dis-
tance of 300 mm was mounted on a three-dimensional traversing
mechanism with the accuracy of 0.01 mm. The test fluids were
seeded with nylon powder �particle diameter 4.15 �m, density
1.02 g/cm3�. The accuracy of the velocity measurements has been
checked by comparing the experimental data for a Newtonian
fluid �90 wt. % glycerol in water� with results from a numerical
simulation for the Newtonian fluid.

The uncertainty for the velocity data is estimated to be ±0.01
for the nondimensional velocity components Vr�, V��, and Vz�.

Numerical Simulation
Numerical simulations were made for the swirling flow of vis-

coelastic fluid in a cylindrical casing with a radius R and height H
when the lower surface �disk� of the casing rotates at a constant
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angular velocity �, as shown in Fig. 2. Assuming that the flow is
incompressible and axially symmetric, we have the following di-
mensionless equation of motion �1� and the continuity equation
�2�:

Dv�/Dt� = − �p� + � · �� �1�

� · v� = 0 �2�

where v� is the velocity vector, p� the pressure, t� the time, and ��
is the deviatoric stress tensor. The dimensionless values are de-
fined as follows: v�=v /R�, ��=� /��R��2, p�= p /��R��2, and
t�= t�.

The power-law model �15� and the Giesekus model �16�, as
shown in Eqs. �3� and �4�, respectively, were used as the consti-
tutive equations

�� = � 1

Re
�� �2D��2

2
��n−1�/2

· 2D� �3�

�� + We ��
�

+ � Re0We ��2 = � 2

Re0
�D� �4�

where D� is the rate-of-strain tensor, Re the modified Reynolds
number �Re=�Rn�R��2−n /K, Re0=�R2� /�0� and We the Weis-
senberg number �We=�G��:

��
�

=
D��

Dt�
− ��v��t · �� − �� · ��v�� �5�

is the upper-convected derivative of the stress tensor ��. � is the
mobility factor. In this study, we assumed �=0.1. The power-law
model does not consider the influence of elasticity, but shows the
shear-thinning viscosity in which the apparent shear viscosity de-
creases with increasing shear rate. The Giesekus model was de-
rived from a molecular model of a Hookean dumbbells with a
nonlinear stress term related to anisotropic hydrodynamic drag.

In order to solve Eqs. �1�–�5�, numerically, we used a finite-
difference method. A staggered grid system in which the locations
of definition for normal stress components are the same as those
of pressure was used. The velocity components and pressure were
solved with the SMAC �simplified marker and cell� method. The
Euler explicit scheme and the elastic viscous split stress �EVSS�
method �17,18� as in the following equation �6� were applied to
Eq. �4� in order to solve the stress tensor:

�� = �� + �� �6�

�� = 2D�Re0 �7�

where �� is the viscous stress and �� is the elastic stress. �� is
calculated by Eq. �7�, and then �� is calculated by the constitutive
equation �4�.

The axial symmetric condition for the rotating axis and the
no-slip condition for all the wall surfaces were applied as the
boundary conditions. When the calculations for large We were
carried out, the results for small We were used as initial values to
stabilize the calculation. The details of the numerical calculations
were reported in our previous paper �11�.

Results and Discussion

Rheological Properties of Fluids. The shear viscosity � and
the first normal stress difference N1 for the working fluids were
measured using a viscometer and a rheometer. The representative
results obtained are shown in Fig. 3 for the aqueous solution of
1.0 wt. % polyacrylamide �PAA�. In the figures, the lines of the
power-law and Giesekus models are drawn for reference. As can
be known from the figures, the power-law model could not repre-
sent the measured shear viscosity well at low shear rate, and the
Giesekus model gives too low a shear viscosity at high shear rate.
On the other hand, the measured N1 values could be represented
fairly well by the Giesekus model. The shear viscosity � was
measured for all PAA solutions used in the present experiment,
but the first normal stress differences, N1 for 0.025 and
0.05 wt. % PAA solutions were too small to determine accurately.
The relaxation times �G for these PAA solutions, therefore, were
estimated by extrapolating the data for PAA solutions of higher
concentrations, as shown in Fig. 4. It was confirmed that the shear
viscosity and the first normal stress difference changed hardly
before and after a test run, indicating no appreciable degradation
of the working fluid during a test run.

Secondary Flow Patterns. Before proceeding to the presenta-
tion of the results concerning the velocity field, it may be appro-
priate to illustrate the flow regime diagram for identifying the flow
pattern in which the velocity field is to be examined. Figures 5
and 6 show the flow regime diagrams in which the patterns of
secondary flow in the meridional section �r-z plane� are classified
based on the visual observations �13,14�.

Figure 5 shows the secondary flow patterns for a large aspect
ratio �H /R=2�. In Fig. 5�a�, the typical secondary flow patterns

Fig. 1 Experimental apparatus

Fig. 2 Disk and cylinder system
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observed for this aspect ratio are illustrated. The parametric
ranges over which the respective secondary flow patterns were
observed are shown in Fig. 5�b�, where Re0 �=�R2� /�0� is the
Reynolds number and E0 �=We/Re0=�G�0 /�R2� is the elasticity
number. The elasticity number is a measure of the ratio of the
elastic force to the inertial �centrifugal� force acting on the work-
ing fluid. When E0 is relatively small as with 0.05–0.10 wt. %
PAA solutions, the changes in the secondary flow patterns with
increasing Re0 are as follows. At the lowest Re0, the structure in
which the flow direction is opposite to that of a Newtonian fluid is
observed �type R�. The secondary flow direction changes to one
opposite to a Newtonian fluid and in an unsteady state in the
vicinity of the central axis �type Rt�, then to a double-cell struc-
ture in which the two cells are aligned vertically in the axial
direction �type DC2�, and finally to a double-cell structure in
which the two cells are aligned laterally in the radial direction
�type DC1��.

Figure 6 shows the secondary flow patterns for a small aspect
ratio �H /R=0.3�. The typical secondary flow patterns are illus-
trated in Fig. 6�a�. For these small aspect ratios, the structure of
the secondary flow changes with increasing Re0, first into a struc-
ture in which the flow direction is opposite to that of a Newtonian
fluid �type R�, then to a double-cell structure with the two cells
aligned in the radial direction �type DC1�, and finally to a struc-
ture �type N� in which the flow is in the same direction as with a

Newtonian fluid. The direction of flow circulation for this type
DC1 differs from that of the type DC1� in Fig. 5�a�.

Velocity Distributions. Velocity measurements were made us-
ing a laser Doppler anemometer for the Reynolds numbers of
0.36�Re0�50. Figures 7 and 8 show the velocity profiles of
circumferential component V�� �=V� /r�� measured at two differ-
ent radial positions for the Reynolds number Re0=5.8 and 50,
respectively, with the aspect ratio H /R=2. In the figures, the ex-
perimental data for aqueous solutions of 0.05–0.2 wt. % PAA are
compared to those obtained by numerical simulations for the
Newtonian fluid �dashed lines�. Although the secondary flow pat-
tern was type Rt at these Reynolds numbers, velocity fluctuations
were hardly detected at the radial positions shown in the figures. It
can be known from Figs. 7 and 8 that the profile of V�� becomes
more decelerated with increasing the concentration of PAA solu-

Fig. 3 Rheological characteristics of the working fluid: „a…
shear viscosity and „b… first normal stress difference

Fig. 4 Relaxation time �G

Fig. 5 Secondary flow patterns for a large aspect ratio H /R
=2.0: „a… typical secondary flow patterns and „b… secondary
flow patterns for various E0 and Re0

Fig. 6 Secondary flow patterns for a small aspect ratio H /R
=0.3: „a… typical secondary flow patterns and „b… secondary
flow patterns for various E0 and Re0
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tion, i.e., increasing the Weissenberg number We. At Re0=50, the
velocity profiles for 0.2 wt. % PAA solution differ significantly
from those for the other solutions, especially at r /R=0.5.

The velocity profiles measured for a small aspect ratio H /R
=0.3 are shown in Figs. 9 and 10 for Re0=10 and 50, respectively.
It is noted in the figures that the velocity profiles for the PAA
solutions vary in the same manner as in Figs. 7 and 8. At this
aspect ratio, however, the velocity profiles for 0.2 wt. % PAA
solution do not show so much difference from others even at high
Reynolds numbers of Re0=50.

Figure 11 shows the distributions of radial �Vr��, circumferential
�V��� and axial �Vz�� velocity components for 1.0 wt. % PAA solu-
tion at H /R=1.0 and Re0=0.36, where all the velocity compo-

nents are normalized with the disk tip velocity �=R��. In the
figures, calculated results for Newtonian fluid are also shown for
comparison. The type of secondary flow patterns for Fig. 11 was
observed to be type Rt of Fig. 5�a�. It should be mentioned that
the measured velocity data were little affected by the unsteady
fluid motion near the central axis, i.e., velocity fluctuations were
not detectable in the time series of velocity data. The direction of
the secondary flow is opposite that for Newtonian fluid, i.e., radi-
ally inward along the rotating disk, axially upward near the rota-
tion axis, and axially downward along the cylindrical wall. It is
well known that the radial inward flow near the rotating disk is
due to the normal stress difference. The magnitude of these veloc-
ity components reaches to as large as around 4% of the disk tip
speed. It should be remarked that the magnitude of Vr� and Vz� is

Fig. 7 Profiles of circumferential velocity component „Re0
=5.8,H /R=2.0…: „a… r /R=0.5 and „b… r /R=0.8

Fig. 8 Profiles of circumferential velocity component „Re0
=50,H /R=2.0…: „a… r /R=0.5 and „b… r /R=0.8

Fig. 9 Profiles of circumferential velocity component „Re0
=10,H /R=0.3…: „a… r /R=0.5 and „b… r /R=0.8

Fig. 10 Profiles of circumferential velocity component „Re0
=50,H /R=0.3…: „a… r /R=0.5 and „b… r /R=0.8
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much larger for 1.0 wt. % PAA solution than that for the Newton-
ian fluid. This means that at these small Reynolds numbers the
secondary flow due to elastic effects is much stronger than that
generated by centrifugal effects. The circumferential velocity
component V�� is found to be much decelerated, especially at the
outer radial position r /R=0.8, compared to that for the Newtonian
fluid.

The velocity vectors measured in the meridional plane are
shown in Fig. 12. The secondary flow of which direction is oppo-
site to that produced by the centrifugal effect is clearly demon-
strated in the figure. The center of the secondary flow circulation
is around r /R=0.65 and z /H=0.75.

In Fig. 13, the V�� distributions obtained by numerical simula-
tions using the power-law model and the Giesekus model as the
constitutive equations are compared to the experimental ones at
H /R=1.0. When the Reynolds number Re0=10 and the Weissen-
berg number We=0.048 �Fig. 13�a��, the calculated V�� profiles
using the power-law model and the Giesekus model are both in
good agreement with the experimental one. At a higher Weissen-
berg number �We=0.24� as shown in Fig. 13�b�, however, these
two models give too small values for V�� near the rotating disk.
Considering the fact that the V�� profile obtained by using the
power-law model becomes more decelerated with increasing We,
it is deduced that one of the causes for the decrease of V�� with
increasing We is the shear-thinning effect of the test fluid, because
the power-law model incorporates only the shear-thinning effect.

In our previous experiment �13�, a strange phenomenon was
observed in which the direction of flow in the r-� plane was
opposite to that of the rotating disk. In the present study, we
performed detailed measurements with respect to the circumferen-
tial velocity component in order to clarify the flow structure.

Figure 14 shows the domain of unsteady flow for 0.3 wt. %

Fig. 11 Velocity distributions for 1.0 wt. % PAA solution „Re0
=0.36,We=13.7,H /R=1.0…: „a… radial component Vr�, „b… circum-
ferential component V��, „c… axial component Vz�, and „d… axial
component Vz�

Fig. 12 Secondary flow in the meridional section „1.0 wt. %
PAA solution, Re0=0.36,We=13.7,H /R=1.0…

Fig. 13 Comparison of velocity profiles between experiments
and numerical simulations „H /R=1.0…: „a… Re0=10,We
=0.048,r /R=0.5 and „b… Re0=50,We=0.24,r /R=0.8
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PAA solution at H /R=2.0 and Re0=5.8. The symbol � in the
figure shows the measured points where periodical oscillations
were observed in the time series of velocity data, and the symbol
� represents the steady flow region. It can be known that the
periodical velocity fluctuation is caused by the spiral instability
�5� in the vicinity of the central axis �type Rt in Fig. 5�. In this
case, the reverse flow in the r-� plane has been observed tempo-
rally at the region of r /R=0.05–0.5 and z /H=0.5–0.9.

On the other hand, in the case shown in Fig. 15 where the
working fluid is 1 wt. % PAA solution and Re0=0.36, continuous

reverse flows in the r-� plane were observed in the region near the
central axis. In the figure, the symbol � shows the measured
points where the continuous reverse flows were observed, the
symbol � shows the steady fluid motion in the same direction as
that of the rotating disk, and the gray circle indicates the point
where the working fluid is almost at rest. The maximum value of
the reverse flow reaches about V��=0.05. The extent of the striped
zone in the figure shows a lump of fluid rotating like a solid body
glued on the disk. The reverse flow in Fig. 15 may be explained
by the elastic recoil effect of the working fluid. Thus, it is plau-
sible that the tangential force acting on the fluid diminishes rap-
idly when the fluid moves away from near the rotating disk in the
vicinity of the central axis, so that the elastic recoil effect may
drive the fluid in the direction opposite to that of the rotating disk.

Conclusions
Swirling flows of viscoelastic fluid in a cylindrical casing with

a rotating end wall �disk� have been studied. The results are sum-
marized as follows:

1. Dimensionless circumferential velocity V�� decreases
with increasing the Weissenberg number We.

2. Both the power-law model and the Giesekus model could
predict this retardation of circumferential velocity fairly
well at small We ��0.1� With increasing We, however,
the V�� values calculated using these two models become
too small compared to the measured ones.

3. The structure of the inverse flow region where the fluid
rotates continuously in the direction opposite to that of
the rotating disk was clarified in detail.

Nomenclature
D 	 rate of strain tensor

E0 	 elasticity number �=We/Re0�
H 	 height of cylindrical casing
K 	 consistency
n 	 power-law index

N1 	 first normal stress difference
R 	 radius of rotating disk

Re0 	 Reynolds number �=�R2� /�0�
r ,� ,z 	 cylindrical coordinates

v 	 velocity vector
Vr ,V� ,Vz 	 velocity components in r ,� ,z directions,

respectively
We 	 Weissenberg number �=�G��

� 	 shear viscosity
�0 	 zero shear viscosity
�G 	 relaxation time of Giesekus model


̇ 	 shear rate
� 	 density of fluid
� 	 stress tensor

� 	 angular velocity of the rotating disk
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Formation of Taylor Vortex Flow
of Polymer Solutions
Laser-induced fluorescence (LIF) was applied for the flow visualization of the formation
of a Taylor vortex, which occurred in the gap between two coaxial cylinders. The test
fluids were tap water and glycerin 60 %wt solution as Newtonian fluids; polyacrilamide
(SeparanAP-30) solutions in the concentration range of 10 to 1000 ppm and
polyethylene-oxide (PEO15) solutions in the range of 20 to 1000 ppm were tested as
non-Newtonian fluids. The Reynolds number range in the experiment was 80�Re�4.0
�103. The rotating inner cylinder was accelerated under the slow condition �d Re* /dt
�1 min−1� in order to obtain a Taylor vortex flow in stable primary mode. Flow visual-
ization results showed that the Görtler vortices of half the number of the Taylor cells
occurred in the gap when the Taylor vortex flow was formed in the primary mode. In
addition, the critical Reynolds number of the polymer solutions increased, where Taylor
vortices occur, because the generation of the Görtler vortices was retarded. In high
concentration polymer solutions, this effect became remarkable. Measurements of steady-
state Taylor cells showed that the upper and lower cells of polymer solutions became
larger in wavelength than those of the Newtonian fluids. The Taylor vortex flow of non-
Newtonian fluids was analyzed and the result obtained using the Giesekus model agreed
with the experimental result. �DOI: 10.1115/1.2137350�

1 Introduction
In general, the flow pattern between two coaxial cylinders

changes considerably with speed, because of instability. It is
known that the pattern can change from a rotational Couette flow
to a Taylor-Couette flow with an increase in speed, for a Newton-
ian fluid between a rotating inner cylinder and a stationary outer
cylinder. This flow field is ideal for research into the transition
process from laminar to turbulent flow because it is slower than
other flow systems and the instabilities are well understood. Thus,
much theoretical and experimental research on the transition pro-
cess using this flow field has been carried out for Newtonian fluids
since Taylor’s work �1�.

Polymer solutions, on the other hand, show a viscoelastic ef-
fect. The rheological behavior and flow characteristics depend on
the types of polymer additives and their concentrations. In recent
years, there has been great interest in the turbulent flows of dilute
polymer solutions, and particularly in the phenomenon of drag
reduction called the Toms effect �2�. However, there have been
few studies on the transition flow from laminar to turbulent flow.

From prior studies conducted using polymer solutions, the
problem of a purely elastic Taylor-Couette instability has been
noted. Larson et al. �3� showed that, for the Oldroyd-B fluid, there
exists an inertia-free mode of instability in a Taylor-Couette flow.
By means of a linear stability analysis, they showed that second-
ary toroidal cells occur when the Deborah number De reaches 20,
which was in agreement with the experiments with a solution of
1000 ppm high-molecular-weight polyisobutylene in a viscous
solvent. Sadanandan and Sureshkumar �4� studied analytically the
influence of elasticity on the budgets of the vorticity and the ki-
netic energy associated with the most dangerous disturbance to the
plane Poiseuille flow of a model polymer solution, using the
Oldroyd-B fluid. They showed that the stabilizing effect due to the
perturbation shear stress increases monotonically with increasing
the elasticity number and also showed a destabilizing influence
due to the perturbation normal stress that increases monotonically.
Sureshkumar et al. �5� calculated the bifurcating families which

correspond to each of the two possible non-axisymmetric patterns
emerging at the point of criticality, namely, the spirals and rib-
bons, to determine their stability. They showed that the unstable
oscillatory modes are always non-axisymmetric, and transitions to
them are probably discontinuous. Although the extensional nature
of the fluid does play an important role, the resulting flow patterns
in this case were not shown.

Regarding the character of instability in a Couette-Taylor flow,
Groisman and Steinberg �6� showed experimentally that two novel
oscillatory flow patterns are observed after small additions of
polymers. One of the patterns was essentially due to the fluid
elasticity, and the other resulted from an inertial instability modi-
fied by the elasticity.

Lee et al. �7� carried out a flow visualization study to reveal the
effect of dilute polymer solutions on the Görtler instability be-
tween two cylinders. They showed experimental results in which
the Görtler instability was stabilized by the polymer additive,
which created increase in the local viscosity.

In general, these works found that viscoelasticity increases the
critical Taylor number at which a cellular flow is observed. Thus,
an increase in viscoelasticity stabilizes the flow against the forma-
tion of initial Taylor vortices. However, the formation process of
Taylor vortices has not been clarified experimentally in detail.
Although it has been speculated that the transition in a Newtonian
fluid is different from that in a viscoelastic fluid, the vortex for-
mation process has not been sufficiently studied. In this work, we
experimentally examined the formation of Taylor vortices with
regard to the effect of high-molecular-polymer additives on the
instability, by using a flow visualization technique. The result ob-
served in the stable mode was compared with the analytical result
in terms of the elasticity and viscosity effects. The numerical
simulation results for polymer solutions produce predictions of the
axial wavelength of the Taylor cell.

2 Experimental Apparatus and Procedure
The test fluid is tap water, glycerin solution is used as the New-

tonian fluid, and polyacrilamide �Separan AP-30� and polyethlene-
oxide �PEO15� solutions ranging in concentration from 10 to
1000 ppm and from 20 to 1000 ppm, respectively, are used as
polymer solutions. The polymer additives were added to distilled
water. Figure 1 shows the flow curve of the polymer solution
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measured using a tube viscometer. After 24 h had elapsed, the
polymer solution was carefully transferred to the test section. The
temperature of the solution was maintained at T=13.0±0.5°C
throughout the experiments because the solutions’ rheology is
temperature dependent. The effect of polymer degradation on the
result was examined by means of pipe friction loss measurement
at the start and end of the experiment.

The experimental apparatus, shown in Fig. 2, is a two-coaxial-
cylinder system in which the inner cylinder is rotated at a constant
speed by a servomotor, while the outer cylinder and end wall are
kept stationary. The height �L� and the gap between the cylinders
are 240 and 39 mm, respectively. The radius of the outer cylinder
�Ro� is 120 mm and, since the aspect ratio �= �L /�� is 6.15, six
Taylor vortices should appear in the gap. The angular velocity of
the inner cylinder �i was measured by means of a digital counter.
The inner and outer cylinders are made of aluminum and acrylic
resin, respectively. An acrylic resin container, filled with tap water
to protect the light reflected from the laser sheet, covers the outer

cylinder. Test fluids were supplied from a head tank through a
nylon tube, to prevent contamination by bubbles.

The formation and evolution of counter-rotating vortices close
to the inner cylinder wall were examined by means of a laser-
induced-fluorescence �LIF� flow visualization technique. A laser
beam was radially directed through the center of the cylinders and
spread into a vertical laser sheet by a cylindrical lens, illuminating
the flow in the �r ,z� plane. The thickness of the sheet was ap-
proximately 5 mm. Test fluids were marked with a fluorescent in a
dye injected upstream of the laser sheet using a syringe, via a
1 mm tube inserted between the cylinders through a hole in the
top of the end plate. The most effective method for marking the
flow close to the inner cylinder was to slowly bleed dye directly
onto the surface of the inner cylinder, and the near-wall vortices
entrained the dyed fluid away from the wall to make the vortices
visible. It was confirmed, using a capillary viscometer, that there
was no change in the viscosity of the liquid which was mixed with
the dye for visualization. Visual records of the LIF experiments
were made using a video camera. The range of the nondimen-
sional Taylor number Ta

*, defined as the ratio of the Taylor number
Ta to the critical Taylor number Tacrit, was 1�Ta

*�2550. Here the
Taylor number is defined as Ta= �Ri�i

2�3� /�2, where � is kine-
matic viscosity. In this paper, we calculated the Taylor number
using the viscosity value of tap water.

Three acceleration rates were applied to evaluate the effect of
acceleration on the formation of Taylor vortices. Figure 3 shows
the acceleration of the inner cylinder in this study. We used the
slow condition �d Re*/dt�1.0 min−1� �8� for the rotation. The
slow condition in this study was about 0.2 rpm/min in the accel-
eration and we confirmed that stabilized Taylor cells occurred in
the flow.

3 Experimental Results and Discussions
Figure 4 shows the visualization result of the cross section of

Taylor cells of Separan 100 ppm solution in the gap. After the
rotation starts, we can see that the dye streak has separated from
the inner cylinder wall, in Fig. 4�a�. With an increase in the rota-
tional speed, a Couette flow forms, as shown in Fig. 4�b�. The
number of streaks almost agrees with the number of rotations. The
secondary flow occurs at the corners of the upper and end plates
after t=600 s, and the secondary flow range becomes larger.
When the size of the vortex reaches approximately one quarter of
the cylinder height, the second vortex, which rotates in the reverse
direction to the first vortex, is generated. In Fig. 4�f�, we recognize
the occurrence of a Görtler vortex from the swelling of the dye
streak at the center of the cylinder wall. Finally, the six Taylor

Fig. 1 Flow curve of polymer solutions

Fig. 2 Experimental apparatus

Fig. 3 Acceleration time of rotating inner cylinder
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cells are fixed in the gap, as shown in Fig. 4�i�. The flow pattern
obtained in this experiment is that of a normal mode of Taylor
vortex flow.

The formation of the vortices in the secondary flow of the dif-
ferent polymer concentrations is plotted against the Reynolds
number in Fig. 5. The phrases written on the vertical axis are the
vortex names shown in Fig. 4. The experimental results show that
the Reynolds number for the third vortex C appears to be almost
the same as the critical Reynolds number given by Taylor �1� for
Newtonian fluids. For polymer solutions, the appearance of either
vortex is retarded compared with that for Newtonian fluids. Re-
markably, it occurs in the second and third vortexes according to
the increase in the polymer concentration. These results mean that
the secondary flow is suppressed, and it can be considered that the
viscoelasticity of polymer solutions has an effect on the phenom-
ena.

On the other hand, drag reduction occurs in surfactant solutions
in the turbulent flow region �9�, and they exhibit a viscoelastic
effect �10�. Watanabe et al. �11� have experimentally shown that
the Taylor cells also appear in the case of a 10 ppm surfactant
solution of Ethoquad O/12. However, no Taylor cells appear in 50
and 100 ppm solutions. In terms of the flow mode, the difference
is clear between polymer and surfactant solutions. In general, the
viscoelasticity of these solutions develops markedly with increas-
ing concentration. The dilute solution properties which we can

consider are the ratio of the second to the first normal stress for
the viscoelasticity, and the ratio of the solvent to the polymer or
surfactant contribution to the shear viscosity. As mentioned, the
flow curve of surfactant solutions has a shear-induced-structure at
low shear rates. Some curious facts are revealed for the contribu-
tion of the viscoelasticity of surfactant properties, not only the
local shear viscosity, to the stability of the flow.

The cross sections of the first vortices of the Separan solution at
different concentrations are shown in Fig. 6�a�. The axial wave-
length of the first vortexes becomes larger with increasing poly-
mer concentration. The total axial wavelengths of the PEO and
Separan solutions are arranged in Fig. 6�b�. Wt is the total axial
wavelength, and the value of Wt is defined as the wavelength in
which the second vortex arises. In the case of Separan solutions, it
increases substantially with the increase in polymer concentration.

To grasp the effect of polymer additives on the stable Taylor
cell mode, we measured the axial wavelength of each cell in the
stable mode. When the flow pattern depends on the time elapsed
from the start of rotation of the inner cylinder, it is important to
allow the system to achieve stable mode. In this measurement,
using Snyder’s formula �12� the stable time was determined to be
3 h from the rotation start time. Figure 7 shows the axial wave-
length of the six Taylor cells of polymer solutions in the gap. The
vertical axis shows the ratio of the wavelength of polymer solu-
tions and that of tap water, and the number on the horizontal axis
corresponds to the cell number shown in Fig. 7�a�. According to
the increase of the concentration in the Separan solutions, the
lengths of no. 1 and no. 6 cells increase. As a result, other cells
become small. The effect of the viscosity on the phenomenon can
be neglected because the mode of tap water observed in this mea-
surement agrees with that of the 60% glycerin solution. It can be
posited that the change using the PEO solutions is less because of
their low viscoelasticities compared to the Separan solutions
shown in Fig. 7�b�.

Figure 8 shows the effect of polymer concentration on the
wavelength of the Görtler vortex. The acceleration of the inner
cylinder is d Re*/dt=750 min−1. As this acceleration progresses, a
fixed Reynolds number is achieved within 1 s. The center-to-
center distance was measured and twice this value was taken to be
the wavelength �G �13�. The experimental values are mean values
obtained from 50 to 100 samples. The reported values are best
estimates for the results and, with 95% confidence, the true value
is believed to lie within ±2% of the present value of tap water.
The solid line in Fig. 8 is the experimental result for Newtonian

Fig. 4 Forming process of Taylor cells of Separan 100 ppm „d Re*/dt
=1 min−1, T=13°C

Fig. 5 Effect of polymer concentration on vortex generation
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fluids �14�. Although our experimental data for tap water lie
slightly above this line, there is a tendency for greater agreement
at lower Taylor numbers.

The wavelength of polymer solutions decreases slowly with Re
in comparison to tap water, for all concentrations. This means that
the solutions’ stabilizing effect on the Görtler instability increases
with Re and with polymer concentration.

The six cells appear in the Taylor vortex flow of the stable
mode for this experimental apparatus because the aspect ratio is
�=6.15. The experimental results also showed the phenomena.
Generally speaking, the flow is analyzed by the momentum equa-
tion for laminar flow �1�. We analyzed the Taylor vortex flow of
the stable mode to clarify the effects of viscoelasticity on the flow
behavior by using the Giesekus model �15�. The finite-element-
based simulation program used was POLYFLOW �Fluent Inc.�.
The calculated fluid is a viscoelastic fluid, which is equal to Sepa-
ran 100 ppm solution in terms of the physical constants. In addi-
tion, three cases were calculated using the power-law model to
examine the effect of the non-Newtonian viscosity. Figure 9
shows the apparent viscosity of the Separan 100 ppm solution,
calculated using the Giesekus and power-law models. The power-
law model fits the experimental data for many pseudoplastics at an

intermediate shear rate and over a range of 10 to 100 fold, but
fails both at very low and very high shear rates as shown in the
figure. The first normal stress difference of the Separan 100 ppm
solution was determined by extrapolation from the high concen-
trated solutions data, because the experimental data is lacking for
dilute polymer solutions.

Figure 10 shows the analytical results of the power-law model.
Increased viscosity has a stabilizing effect on the inertial instabil-
ity; however, the results of the power-law model do not concur
with the experimental results. The analytical results of the
Giesekus model are shown in Fig. 11, in comparison with the
experimental results of the Separan solutions. In Fig. 11, the

Fig. 6 „a… First vortex of Separan solutions and „b… Total axial
wavelength of first vortex

Fig. 7 „a… Taylor cell number; „b… Separan solutions; and „c…
PEO solutions
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dotted lines show the position of Taylor cells no. 1 and no. 6 of
the glycerin 60% solution for the case of Newtonian fluids. The
calculated results of the viscoelastic fluids agree with the experi-
mental results.

4 Conclusions
The effect of drag-reducing polymer additives on the formation

process of Taylor cells in a Taylor-Couette flow was investigated
by means of a laser-induced-fluorescence �LIF� flow visualization
technique. Visual observations revealed that Taylor cells were
formed in polymer solutions in spite of their not forming in sur-
factant solutions with viscoelastic properties. This polymer case is
consistent with the analytical results for a viscoelastic fluid in the
stability mode. Measurements of the wavelength of the Görtler
vortices lead to the conclusion that the stabilizing effect on the
Görtler instability increases with polymer concentration. How-
ever, the role of the elasticity of viscoelastic fluid in relation to the
stability of the forming process in the Taylor cell surfactant case
remains to be clarified.
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Nomenclature
DR 	 drag reduction ratio

h 	 axial wavelength ratio to tap water

�=Wtest fluid /Wwater�100�
L 	 cylinder height

NRe 	 generalized Reynolds number
Re 	 Reynolds number �=Ri�i� /��

Recrit 	 critical Re number to Taylor Couette flow
Re* 	 ratio of Re to Recrit �=Re/Recrit�

Ri 	 inner cylinder radius
Ro 	 outer cylinder radius
T 	 temperature of test fluid

W 	 axial wavelength of Taylor cell
WL 	 axial wavelength of lower Taylor cell
WU 	 axial wavelength of upper Taylor cell
Wt 	 total axial wavelength �=WU+WL�

t 	 time of inner cylinder rotation
tr 	 relaxation time of Taylor cells
� 	 gap width �=Ri−Ro�

Fig. 8 Görtler wavelength of polymer solutions

Fig. 9 Apparent viscosity of Separan 100 ppm solution

Fig. 10 Analytical results for power law models †�̇m
=0.075„1/s…‡

Fig. 11 Analytical results for viscoelastic model †�̇m
=0.075„1/s…‡
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� 	 aspect ratio
�̇ 	 shear rate

�̇m 	 mean shear rate
� 	 viscosity of test solution
 	 shear stress

�G 	 Görtler wavelength
� 	 kinematic viscosity of tap water

�i 	 angular velocity
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Vortex Motion in a Swirling Flow
of Surfactant Solution
with Drag Reduction
Surfactants are well known as additives which induce drag reduction in the straight
(nonswirling) pipe flow. However, in industrial applications of the drag-reducing effect,
many flow fields besides the straight pipe flow need to be considered. The purpose of this
study is to investigate the flow characteristics of the surfactant solution in swirling pipe
flow. The drag-reducing effect is estimated from the measurement of wall pressure drop
and velocity profiles on various pipe sections by two-dimensional LDV (Laser Doppler
Velocimeter). Since the surfactant solution has viscoelasticity, interesting flow character-
istics are obtained. The decay of swirl, the vortex type and the turbulence intensity are
discussed, compared with the swirling flow of the water. As the results, it is concluded
that the change from Rankin’s combined vortex to the forced vortex at a more upstream
section by suppressing progress of free vortex and stretch of forced vortex introduces
considerable drag reduction. Oscillation of the vortex core is also investigated, and it is
found that the oscillation is independent of swirl number. �DOI: 10.1115/1.2136927�

Keywords: swirling flow, drag reduction, surfactant solution, vortex, LDV

Introduction
It is well known that the addition of certain kinds of surfactants,

as well as polymers, to a Newtonian fluid causes considerable
drag reduction in the turbulent and nonswirling pipe flow. The
drag-reducing rate reaches 80%. Therefore a successful applica-
tion of this effect would be a great contribution in industrial pipe
flow systems. Applications to an air-conditioning system in a
building and a district heating/cooling system have attracted spe-
cial interest recently �1�. Those pipe flow systems have many
complicated flow fields produced by curved pipes, branched pipes,
and pumping machines. Therefore investigation on various flow
fields is required to effectively apply the drag-reducing effect to
the systems. We focus the effect of surfactant on swirling flow in
a pipe. Swirling flow of Newtonian fluids has been investigated
from mid-1950s onwards, for example, Binnie �2� and Nuttal �3�
for a central cylindrical region of reversed axial flow and Talbot
�4� for a laminar swirling flow.

The surfactant solution has viscoelasticity and shows interest-
ing flow characteristics. Some investigators have studied the ro-
tating flow of non-Newtonian fluids in a container �Stokes et al.
�5��. In most of the flow fields the rotational Reynolds number
based on a tangential velocity is low. However, in this study, the
experiments are performed using high Reynolds numbers �a bulk
velocity is taken as a representative velocity�. The drag-reducing
effect of a surfactant solution in the swirling pipe flow is obtained
in the high bulk velocity, which is similar to the case of nonswirl-
ing flow. The swirl generator in this study is equipped with guide
vanes �6� and installed at the entrance of the test pipe. The wall
pressure drop and the velocity profiles on various pipe sections are
measured in order to investigate the flow characteristics of the
surfactant solution in the swirling pipe flow. Relationships among
the type of vortex and the decay of swirl and the oscillating phe-
nomenon of the vortex core are analyzed. The swirl decay in
Newtonian fluid has been investigated by Hatazawa �7�, Kreith
and Sonju �8�, Kitoh �9�. Smith �10�, Chanaud �11�, and Ito �12�
reported the oscillating phenomenon in the vortex whistle and the

cyclone separator, in which the ratio of the pipe length to the
diameter is smaller than that of the pipe used in the present study.
In our previous work �13� it has been shown that the forced vortex
is easily formed, when the surfactant solution is used instead of
the water. One of the reasons for this could be suppressed cen-
trifugal force by the elastic effect of surfactant solution. Oscillat-
ing phenomenon of the vortex core often observed in Rankin’s
vortex is investigated by using the time history data of velocity in
the vortex core. The characteristics of oscillating frequency and
the relation between the oscillating frequency and the swirl num-
ber are discussed.

Experimental Setup and Methods
The swirling flow was generated by swirl generator with 12

guide vanes �Fig. 1�, which was installed at the entrance of the
pipe. Inclination angles of the vane ��� at 45, 60, and 70 deg were
used in order to change the initial swirl intensity, for measure-
ments of the drag-reducing effect. However, for the LDV �Laser
Doppler Velocimeter� measurement, we present the results only at
�=60 deg for convenience of explanation.

Figure 2 shows the experimental setup. The inner diameter, d�
=2R�, and the length of the test pipe were 44 and 5000 mm
�114d�, respectively. The flow was induced by the difference be-
tween the solution levels, H, in the inlet tank and the outlet tank.
Two solution levels were kept constant by an overflow system.
The solution was kept at a constant temperature �25±0.5°C� by
cooling and heating coils.

Mass flow rates were measured by a platform scale. Wall pres-
sure was measured at four axial positions of the pipe. At each
position, the pressures measured by four pressure taps spaced at
an equal distance in the circumferential direction were averaged.
The axial and tangential components of velocity were measured
by LDV and then averaged in time, and turbulence intensities
were obtained, respectively. Oscillation of the vortex was ana-
lyzed using time history data of the velocity. Axial position, x, was
defined as a distance from the inlet of the pipe. Positive direction
of tangential velocity, Vt, is shown in Fig. 1. Profiles of two-
component velocity in the radial direction were measured at six
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sections in the axial direction. Polyethylene particles with 10 �m
diameter and a specific gravity of 0.918 were used as seeding
particles for LDV measurements.

The surfactant solution �CTAB� used in this study was 500 ppm
cetyl-trimetyl ammonium bromide in water containing sodium
salicylate at the same molar concentration as cetyl-trimetyl am-
monium bromide. CTAB is characterized by “the shear-thinning
property,” in which the kinematic viscosity increases with a de-
crease of shear rate. CTAB is also classified into non-Newtonian
fluids as a pseudo-plastic fluid and a viscoelastic fluid. However,
in this study, a constant kinematic viscosity could not be deter-
mined for CTAB in the swirling flow, because shear stresses, as
well as axial and tangential velocity profiles at the cross sections
of the pipe, changed in the downstream direction. Therefore,
Re�=Vbd /�� and Ret�=VtmR /�� were calculated using the kine-
matic viscosity of the water. More specifically, Re and Ret present
nondimensional bulk velocity and nondimensional tangential ve-
locity at the upstream end of the pipe, respectively.

Results and Discussions

Effect of Guide Vane Inclination Angle on Friction
Coefficient. Because a difference between the total pressure drop
and the pressure drop obtained from wall pressure was within 5%
in our previous experiment �14�, the net energy loss was estimated
only by the wall pressure drop. Figure 3 shows the friction coef-

ficient as a function of Reynolds number; the pressure drop is
estimated for the axial segment between two positions, which are
48d and 99d from the inlet of pipe, separated by 51d. According
to Hatazawa’s report �15�, because they position more down-
stream than 15d, it is considered that the friction coefficient has
no effect of the entry condition. Data for straight shear flow �non-
swirling flow� are also shown in Fig. 3. The friction coefficient for
nonswirling water flow is consistent with Blasius’s equation for
Newtonian fluid flow. For nonswirling CTAB flow, the friction
coefficient approaches Virk’s maximum drag-reducing asymptote
�16� for nonswirling flow as Re increases. The friction coefficients
of the water flow become larger as � increases, when Re is higher
than 104. The friction coefficients of the CTAB flow are lower
than those of the water, thus it is shown that significant drag
reduction occurs. Furthermore, the friction coefficient of the
CTAB decreases until a critical Re and then increases afterwards.
The critical Re is shifted lower as � increases. Assuming that an
excessive shear stress is put on the shear layer in higher Re, it is
likely that the elastic stress of the surfactant solution does not
work effectively due to a collapse of micelle structure in the so-
lution, which leads to the increase in friction coefficient. There-
fore it is considered that the micelle structure is stressed stronger
with increasing of � in higher Re.

Drag-reducing rate �DR� is defined by

Fig. 1 Swirl generator

Fig. 2 Experimental setup
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DR�%� = ��w − �C

�W
� � 100 �1�

Here, �C and �w are friction coefficients at a given Re of the
surfactant solution �CTAB� and the water, respectively. The �w is
estimated by the following equation, when � is 60 deg:

�W = 0.378 Re−0.24 �2�

Figure 4 shows DR vs. Re. Vane angles ��� do not affect DR
when Re is lower than the critical Re, but at the Re higher than the
critical Re, DR becomes greater with the decrease in �. Maximum
DR reaches 80% at �=45 deg. Solid lines indicate DR using �w
of the nonswirling flow in the water, which is obtained by
Blasius’s equation ��=0.3164Re−0.25�. The swirling flows of the
CTAB induce the drag reduction, even when those are compared
to the nonswirling flow of Newtonian fluid. However, at �
=70 deg in the Re higher than 6�104, the drag reduction of
swirling flow, compared with the nonswirling flow, is no longer
obtained because the swirl intensity is higher.

Swirl Intensity. Swirl intensity in an axisymmetric flow can be
expressed by swirl number, Sw, as follows �17�:

Sw =

�
0

R

VxVtr
2dr

R�
0

R

Vx
2rdr

�3�

where Vx and Vt are the axial velocity and the tangential velocity,
respectively, measured by LDV. Since the swirl flow is not exactly
axisymmetric, Vx and Vt are measured across the pipe diameter
and then the representative swirl number at a cross section is
obtained by averaging two swirl numbers. The swirl number for
Newtonian flow decays exponentially in the downstream direc-
tion. This behavior can be expressed as follows �9�:

Sw = Sw0 exp�2a1�x − x0�/d� �4�

where a1 is the decay coefficient and Sw0 is the swirl number at a
reference position, x0. The reference position in this study is the
upstream end of the pipe. Therefore Sw0 represents the initial
swirl intensity and shows the highest intensity in the experiment.

Decay of the swirl numbers at the bulk velocity of 0.95 m/s
�Re=4.7�104, Ret=9.0�103� is shown in Fig. 5. The decay co-
efficient a1 depends on Re �or bulk velocity� as it was shown in
the previous reports �9,18�. The magnitude of Sw and the decay of
Sw depend on the DR. In the CTAB with DR of 52%, the Sw is
lower and the exponential decay of Sw is smaller than that in the
CTAB with DR of 40%, which is probably caused by the higher
effective viscosity or the viscoelasticity of the CTAB with the DR
of 52%. Therefore the change of Sw of the CTAB with DR
=52% is similar to that of the CTAB with DR=40% at the Re
lower than the estimated Re. In other words, the actual Re of
CTAB with DR=52% would be lower than the Re defined using
kinematic viscosity for the water, which is used to estimate the Re
of the CTAB with DR=40%.

Vortex Type. Figures 6 and 7 show the changes in the profiles
of Vx and Vt, respectively, for the water and the CTAB with DR
=40% and 52%, in the stream wise direction. Although the mean
velocity profile of CTAB with DR=52% is shown by a solid line,
the error bounds of all mean velocity profiles including other so-
lutions are within the symbol size in figures. Different vortex
types are observed at the upstream sections. For the first vortex
type, Rankin’s combined vortex has a forced vortex in the core
region and a free vortex in the annular region. The tangential
mean velocity profile has the gradient of �Vt /�r�0 and �Vt /�r
�0 in the forced vortex region and the free vortex region, respec-
tively. The second vortex type is the forced vortex all over the
cross section of pipe, without free vortex. The upstream vortex
type of the water and the CTAB with DR=40% is the Rankin’s
combined vortex, while the downstream type is the forced vortex.
The CTAB with DR=52% forms a forced vortex in all sections as
described by the solid line.

We focus on the transition from the Rankin’s combined vortex
to the forced vortex via the following steps; step 1 is the progress
of the free vortex or stretch of the forced vortex, which is found
by expansion of the annular region of the free vortex or an in-
crease of the tangential velocity gradient, �Vt /�r, in the core re-
gion, and after a vortex breakdown step 2 is the decay of the free
vortex or development of the forced vortex in Rankin’s combined
vortex. In the water, the value of Vx in the core region decreases
between the inlet �x /d=6.0� and x /d=17.7, and then increases
along the downstream, while the gradient of tangential velocity,
�Vt /�r, in the core region increases also between the inlet �x /d
=6.0� and x /d=17.7, and then decreases. Between x /d=6.0 and
x /d=17.7, the core region becomes narrower with the stretch of

Fig. 3 Friction coefficient vs. Re

Fig. 4 Drag-reducing rate compared with the friction coeffi-
cient in Newtonian swirling flow

Fig. 5 Decay of Sw in the stream wise direction at �=60 deg;
solid lines and dashed lines indicate approximate expressions
of swirl decay in Rankin’s combined vortex and the forced vor-
tex, respectively
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the forced vortex, in which it has a vortex breakdown bubble.
Here, reverse flow is observed. The annular region becomes wider
with the progress of free vortex. In the CTAB with DR=40%,
values of Vx in the core region of Rankin’s combined vortex are
larger than that in the water, and the value of Vt at an edge of the
free vortex is smaller than that in the water, although they have a
similar decay of Sw at the upstream section.

In the water, it is expected that the vortex breakdown between
steps 1 and 2 occurs between 17.7 and 30.1 in x /d, and then the
transition of the vortex type occurs between 69.3 and 101.8 in x /d
as shown in the decay line of Sw �Fig. 5� and velocity profiles
�Figs. 6 and 7�. In the CTAB with DR=40%, the flow at x /d
=6.0 is in step 2 because the increase of �Vt /�r in the core region

in step 1 is not observed, and it is expected that the vortex break-
down occurs before x /d=6.0, and then the transition to the forced
vortex occurs between 17.7 and 30.1 in x /d. Now, at x /d=17.7,
the vortex type formed in the CTAB with DR=40% is an inter-
mediate between Rankin’s combined vortex and the forced vortex,
in which the edge of the core region between the forced vortex
and the free vortex is indistinct. These results indicate that the
change from Rankin’s combined vortex to the forced vortex at a
more upstream section, by suppressing the progress of the free
vortex and the stretch of the forced vortex, would introduce con-
siderable drag reduction in the CTAB.

The flow of the CTAB forms the forced vortex when the Sw is
less than about 0.3. The swirl number at which the vortex type

Fig. 6 Axial velocity profiles „Vb=0.95 m/s at �=60 deg…

Fig. 7 Tangential velocity profiles „Vb=0.95 m/s at �=60 deg…

Fig. 8 Turbulence intensity profiles of axial velocity fluctuations „Vb=0.95 m/s at
�=60 deg…

Fig. 9 Turbulence intensity profiles of tangential velocity fluctuations „Vb
=0.95 m/s at �=60 deg…
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changes is defined as a critical Sw. The critical Sw of the CTAB at
�=60° is smaller than that at the �=70° obtained in the previous
study �18�, but larger than that of the water. When � is 45°, the
critical Sw of the CTAB with DR=30% is 0.2. The critical Sw of
the CTAB is influenced by � and DR, although the critical Sw of
the water is constant independently of �. Therefore contributing
factor to the critical Sw in the CTAB is not clear and require more
investigations.

Turbulence Intensity. Figures 8 and 9 show profiles of turbu-
lence intensity of the water and the CTAB with DR=40% and
52%, toward the downstream direction. The turbulence intensity
in the Rankin’s vortex in the core region is higher than in the
annular region, because the velocity gradient is larger and the
vortex core is oscillating in the core region as described in the
next section. The turbulence intensity becomes stronger as the
velocity gradient increases with the progress of free vortex �or the
stretch of forced vortex�. However, at the cross section immedi-
ately after the vortex breakdown, the turbulence intensity in the
core region is stronger than the intensity before the vortex break-
down. In the water, the position of the immediate cross section is
x /d=30.1, and at the downstream cross sections x /d=44.8, 69.3,
the turbulence intensity in the core region becomes smaller and
the core region is extended toward the pipe periphery. Finally, at
the position x /d=101.8, where the forced vortex is formed over
the entire cross section in the water flow, the turbulence intensity
has no peak around the center of the pipe.

The turbulence intensity of the CTAB is smaller than that of the
water, which is in agreement with the case of �=70 deg �18�. It is
of interest that the turbulent intensity of the CTAB is smaller in
spite of the larger velocity gradient near the wall compared to the
water, as shown especially in the tangential velocity gradient
�Fig. 7�.

Oscillating Phenomenon of the Vortex Core. The time history
of the velocity is analyzed in order to investigate the oscillation of
the vortex core. Figures 10�a� and 10�b� show the time history of
tangential velocity fluctuation, Vt� at r /R�0 of the water and the
CTAB with DR=40%, respectively. The wave of velocity fluctua-
tion consists of the high-frequency wave and the low-frequency
wave with high amplitude. The low-frequency wave shows the
oscillation of the vortex core. In the forced vortex, the clear waves
due to the oscillation are not detected. A periodicity of the low-
frequency wave and the wave number are affected by the vortex
type.

Figure 11 shows the autocorrelation coefficient of tangential
velocity fluctuations shown in Fig. 10. The coefficient is calcu-
lated from the velocity data for 30 s with the time interval of
0.001 s. In the water, the autocorrelation coefficient and the peri-
odicity are low until x /d=17.7. At the position immediately after
the maximum stretch of the free vortex in the core region, the
highest oscillation frequency and the most periodic oscillating
phenomenon are observed. And then the oscillating frequency de-
creases and the periodicity of oscillating phenomenon diminishes,
as the region of the free vortex becomes narrower and finally
disappears. It is difficult to detect clearly the oscillating phenom-
enon at the center of the pipe in the forced vortex region at the
downstream section because of the low swirl intensity. On the
other hand, in the CTAB �DR=40% �, the periodicity of the oscil-
lating phenomenon is not clear at any positions tested except
x /d=6.0, even at the cross section with Sw higher than that of
water. It is suggested that the oscillating frequency is independent
of Sw.

Conclusions
The wall pressure drop and the velocity profiles are measured in

order to investigate the characteristics of the swirling flow of the
surfactant solution. The effect of Re and � on the drag reduction
are shown; the critical Re with the maximum DR decreases as �

increases; the maximum DR reaches 80% when � is 45 deg. It is
found that the magnitude of Sw, the decay of Sw, and the type of
vortex formed at the same bulk velocity are affected by the DR,
which could be influenced by the effective viscosity and the elas-
ticity. The surfactant solution forms most easily the forced vortex
at a higher Sw compared to the water. These results indicate that
the change to the forced vortex at a more upstream section by

Fig. 10 Fluctuation of nondimensional tangential velocity at
r /RÉ0 „Vb=0.95 m/s at �=60 deg…

Fig. 11 Autocorrelation coefficient of Vt� at r /RÉ0
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suppressing the progress of the free vortex and the stretch of the
forced vortex introduces considerable drag reduction. Further-
more, it is of interest that the turbulent intensity of the surfactant
solution is smaller in spite of the larger velocity gradient near the
wall being larger than that of the water. The turbulence intensity
in the Rankin’s vortex in the core region is higher than in the
annular region, because the velocity gradient is larger and the
vortex core is oscillating. However, the periodic oscillation of the
surfactant solution is not observed even at the cross section with
Sw higher than that of water, suggesting that the oscillating fre-
quency is independent of Sw.
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Nomenclature
a1 � swirl decay coefficient

d�=2R� � inner diameter of the test pipe �=0.044 m�
DR � drag reduction, %

r � radial distance from the axis of the test pipe
R � radius of the test pipe �=0.022 m�
Ri � outside radius of the guide vane wheel

Re � Reynolds number �=Vbd /��
Ret � rotational Reynolds number �=VtmR /��
Sw � swirl number

V � mean velocity
V� � velocity fluctuation
Vti � tangential mean velocity at the inlet of guide

vane, assuming infinite number of vanes
Vtm � tangential mean velocity �r=R� at the upstream

end of the test pipe �=VtiRi /R�
Vb � bulk velocity

x � axial distance from the upstream end of the
test pipe

Greek Letters
� � guide vane inclination angle
� � friction coefficient in a pipe
� � kinematic viscosity

Subscripts
0 � reference location
t � tangential component

rms � root mean square
x � axial component
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Three Regimes of Non-Newtonian
Rimming Flow
The present study is related to the rimming flow of non-Newtonian fluid on the inner
surface of a horizontal rotating cylinder. Using a scale analysis, the main characteristic
scales and nondimensional parameters, which describe the principal features of the pro-
cess, are found. Exploiting the fact that one of the parameters is very small, an approxi-
mate asymptotic mathematical model of the process is developed and justified. For a wide
range of fluids, a general constitutive law can be presented by a single function relating
shear stress and shear rate that corresponds to a generalized Newtonian model. For this
case, the run-off condition for rimming flow is derived. Provided the run-off condition is
satisfied, the existence of a steady-state solution is proved. Within the bounds stipulated
by this condition, film thickness admits a continuous solution, which corresponds to
subcritical and critical flow regimes. It is proved that for the critical regime the solution
has a corner on the rising wall of the cylinder. In the supercritical flow regime, a
discontinuous solution is possible and a hydraulic jump may occur. It is shown that
straightforward leading order steady-state theory can work well to study the shock loca-
tion and height. For the particular case of a power-law model, the analytical solution of
a steady-state equation for the fluid film thickness is found in explicit form. More complex
rheological models, which show linear Newtonian behavior at low shear rates with
transition to power law at moderate shear rates, are also considered. In particular,
numerical computations were carried out for the Ellis model. For this model, some
analytical asymptotic solutions have also been obtained in explicit form and compared
with the results of numerical computations. Based on these solutions, the optimal values
of parameters, which should be used in the Ellis equation for the correct simulation of the
coating flows, are determined; the criteria that guarantee the steady-state continuous
solutions are defined; and the size and location of the stationary hydraulic jumps, which
form when the flow is in the supercritical state, are obtained for the different flow
parameters. �DOI: 10.1115/1.2137342�

Introduction
The problem of rotational flow on the inner and/or on the outer

wall of a hollow horizontal cylinder has been of interest for many
years due to its wide range of applications in industry. A sche-
matic sketch of the process is presented in Fig. 1. Rimming flow
at high rotation rates, as a limiting case when the motion of the
liquid is a small perturbation from a rigid-body motion, was ana-
lyzed in �1�. However, as it was demonstrated later �2–4�, already
at relatively low angular velocities the flow can settle into a steady
two-dimensional flow. Based on the previous studies three flow
regimes can be identified. When the mass flux through the cross
section of the liquid layer on the wall of the cylinder q is below its
maximal supportable value qmax, then fluid film thickness is a
continuous and smooth function of an angular coordinate. This
regime is called subcritical. The critical steady-state regime occurs
when the mass flux q is equal to its critical value qmax. In addition
to these two regimes, a third regime, which was named supercriti-
cal, is also possible for q=qmax. This regime is associated with the
existence of a steady-state puddle �further hydraulic jump� on the
rising wall of the cylinder, which occurs as a result of an exces-
sive mass of the liquid loaded on the wall or a too low rotational
rate �see Fig. 1�c��. In �5� it was shown that for the Newtonian
model the straightforward leading order steady-state lubrication
theory could work well to study hydraulic jumps locations and
heights in the supercritical regime. Although the aforementioned
investigations highlight the main characteristics of the rimming
flow, due respect to the effect of non-Newtonian properties was

not given. In the present paper we extend the estimates made for
Newtonian fluids by Moffatt �2� and O’Brien and Gath �5� for the
more general case of a non-Newtonian fluid. In numerical com-
putations the Ellis constitutive equation is used for the quantita-
tive analysis of three possible steady-state regimes �subcritical,
critical, and supercritical� of rimming flow on the inner surface of
the horizontal rotating cylinder.

System Model and Analysis
Our main concern is rotational moulding of highly viscous

polymers, which exhibit Newtonian behavior at low shear rates
with transition to power-law shear thinning at moderate shear
rates �6�. The angular velocity of the cylinder, �, is relatively low,
the liquid film is thin, the effect of the centripetal force is negli-
gibly small �in contrast to the case studied in �1��, and rimming
flow is mainly dominated by the interaction of the gravity and
viscous forces. In our recent paper related to non-Newtonian flu-
ids �7� only subcritical and critical flow regimes were analyzed.
The latter was done numerically on the basis of Carreau-Yasuda
constitutive model. In the present studies we utilize the Ellis
model and extend our previous estimates to the supercritical flow
regime. We assume that the ratio �=h0 /r0 of the liquid layer char-
acteristic thickness, h0, to the radius of the cylinder, r0, is small
and, hence, the simple lubrication theory can be applied. Using a
scale analysis, a theoretical description for a steady-state non-
Newtonian flow is obtained. The main nondimensional complexes
that define the process are derived and their typical numerical
values are computed, e.g., it was found that �= ��gr0 /���1/2

�0.02, where � and � are fluid density and typical viscosity,
respectively. When the shear rate is large, the shear thinning effect
can be significant, but the memory effects may still be negligible
because of the long time scale for the flow transitions. The nu-
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merical estimates of elastic effects are based on a typical time
scale for liquid polymers �. This value is well documented for
rotational flows �8,9� and normally stays in the range of
10−3–10−2 s. The time scale for the rimming flow associated with
rotation is T=1/�. Hence, the Deborah number De=� /T=�� for
the maximal rotational rates, �, that occur in rotational moulding
��10 rad s−1�, is in the range De�10−2–10−1. Since the Deborah
number, which characterizes memory effects, is sufficiently small,
the flow is assumed to be viscometric. A general constitutive law
for this kind of flow requires only a single function relating shear
stress and shear rate that corresponds to a generalized Newtonian
model.

The horizontal cylinder is assumed to be of infinite length. A
cylindrical system of coordinates is located such that the z axis
coincides with the axis of the cylinder and symmetry is assumed
along this axis so that the flow picture is two-dimensional �Fig. 1�.
The balance laws for momentum and mass of an incompressible
fluid are

�
Dv*

Dt* = �g − �p* + � · �* �1�

� · v* = 0 �2�
Accounting for the surface tension, boundary conditions on the
free surface are as follows:

− p* + n · �* · n = 2�	, n · �* · t = 0, �3�

where n is the external to the liquid layer normal unit, t is the
tangent, � is the stress tensor deviator, 	 is the surface tension,
and � is the mean curvature of the free surface. The latter is
calculated from the equation 2�=� ·n. The tangent and the nor-
mal to the free surface, which is defined as r*=r0−h*�
 , t�, are
given by

t = �−
�h*

�

er + r*e
�	
� �h*

�

�2

+ r*2�1/2

,

n = − �er +
1

r*

�h*

�

e
�	
1 + � 1

r*

�h*

�

�2�1/2

On the wall of the cylinder r*=r0, v*��r
* ,�


*�= �0,�r0�. The kine-
matics condition D�r*−r0+h*� /Dt*=0 on the free surface can be
presented in the following form:

�h*

�t* + �r
* +

�

*

r*

�h*

�

= 0 �4�

For the non-Newtonian fluid the constitutive law is given by �*

=2�*��*�e*, where e* is the rate-of-deformation tensor given by
e*= ���v*�+ ��v*�T� /2 and �* is a local shear rate, defined by
�*= �2 tr�e*2��1/2. In particular, for the power-law fluid the viscos-
ity is given by �*=k��*�n−1. The stress-strain rate correlations in
the 2D case reduce to the following:




* = 2�*� 1

r*

��

*

�

+

�r
*

r* �, rr
* = 2�*��r

*

�r* ,

�5�

r

* = �� 1

r*

��r
*

�

+

��

*

�r* −
�


*

r* � .

The characteristic scales for the variables in the rimming flow are
obvious and well documented, therefore, the nondimensional vari-
ables can be readily introduced as

�
 = �

*/�r0, �r = �r

*/�0r0�, r = r*/r0,

R = �1 − r�/�, h = h*/h0,
�6�

r
 = r

* �/�0�, �

,rr� = �



* ,rr
* �/�0� ,

t = t*�, p = p*/g�r0

Here � is the ratio of characteristic thickness of the liquid layer h0
to the radius of the cylinder r0 and �0 is the characteristic dy-
namic viscosity. As a result of scale analysis of the governing
equations and boundary conditions three nondimensional param-
eters are defined:

� = ��0�

�gr0
�1/2

� 1, Re = �2��r0
2

�0
� 0, CB = �2 	

r0�0�
� 1.

�7�

where Re is a Reynolds number and characterizes the ratio of
inertial to the viscous forces, and CB is the inverse of the Bonds
number and characterizes the ratio of capillary and gravitational
forces. Exploiting parameter � being very small and to this end
ignoring the terms of O��2�, the nondimensional continuity and
momentum equations in cylindrical coordinates reduce to

−
�

�R
��1 − R���R� +

��


�

= 0 �8�

− � sin 
 +
�p

�R
+ O��2� = 0 �9�

− cos 
 −
1

1 − �R

�p

�

−

�R


�R
+ 2�R
 + O��2� = 0 �10�

For the viscometric flow


R = ��−
��


�R
−

��


1 − �R
�, RR = − 2�

��R

�R
,

�11�



 =
2�

1 − �R
� ��


�

+ ��R�

where

Fig. 1 A schematic sketch of rimming flow in the horizontal cylinder: „a… smooth solu-
tion in subcritical state, „b… critical regime, and „c… supercritical regime
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� = ����̇��, �̇ =
��


�R
+

��


1 − �R
+ O��2� . �12�

The kinematic condition on the free surface R=h in the nondi-
mensional form is given by

�h

�t
+ �R +

�h

�


�


�1 − �R�
= 0 �13�

Integrating the mass conservation equation �8� across the layer
and introducing the result into the above equation yields

�1 − �h�
�h

�t
+

�

�
�
0

h

�
dR� = 0 �14�

Stress balance conditions on the free surface R=h in tangential
and transverse directions, respectively, reduce to


R + O��2� = 0 �15�

p = CB�1 + h� + �
�2h

�
2 + � + O��2� �16�

On the wall of the cylinder R=0

v��r,�
� = �0,1� �17�

For the generalized Newtonian liquid approximately to O��2�


R = − ����̇���̇ + O��2� , �18�

where �̇ is defined by Eq. �12�.
At this stage it is convenient to introduce a function G�x� as the

inverse of function ���̇��̇ so that for x�0 equations G���x�x�
=x and �(G�x�)G�x�=x should be satisfied. It is physically evi-
dent that shear stress should be a smooth and continuously in-
creasing function of shear rate. Hence, function ���̇��̇ can be
assumed as an analytical and monotonic function. Due to the
monotonic inverse function theorem, the inverse to ���̇��̇ func-
tion G should also be an analytic and increasing function. For this
definition, stress-strain correlation can be converted to its inverse
form as follows:

�̇ = − sgn�
R�G��
R�� . �19�

To determine the dimensionless azimuthal velocity, which
should be substituted into Eq. �14�, the method of perturbations is
utilized. The unknown functions in Eqs. �9�–�11� are expanded in
asymptotic series by a small parameter � with the adopted accu-
racy of O��2�:

p = p0 + �p1 + O��2�, 
R = 
R
0 + �
R

1 + O��2� �20�
Substituting formulas �20� into the governing Eqs. �9�–�11� and
boundary conditions �15� and �16� and collecting the terms of the
same order yields

�p0

�R
= 0, cos 
 +

�p0

�

+

�R

0

�R
= 0 �21�

�p1

�R
− sin 
 = 0, −

�p1

�

− R

�p0

�

−

�
R
1

�R
+ 2R


0 = 0 �22�

Boundary conditions reduce to the following ones:

for R = h, 
R
0 = 0, p0 = CB, p1 = CB�h +

�2h

�
2�, 
R
1 = 0

�23�
Solution of the equations �21� and �22� subject to boundary con-
ditions �23� is straightforward:


R
0 = �h − R�cos 
, p0 = CB, p1 = − �h − R�sin 
 + CB�h +

�2h

�
2�
�24�


R
1 = −

3

2
�h − R�2 cos 
 + �h − R�
− sin 


�h

�

+ CB� �h

�

+

�2h

�
3��
�25�

Combining equations �19� and �12�, and accounting for boundary
conditions �17�, the unknown velocity �
 can be readily obtained:

�
 = �1 − sgn�
R�
0

R

exp��R�G��
R
0 + �
R

1 ��dR�exp�− �R� ,

�26�

where 
R
0 and 
R

1 are defined by �24� and �25�.
Substituting function �
 into Eq. �14� and integrating with re-

spect to R leads to the equation for the liquid layer thickness

�1 − �h�
�h

�t
+

�

�

h − �
h2

2
− sgn�
R

0 + �
R
1 �

0

h

�h − R��1 −
�

2
�h

− R��G��
R
0 + �
R

1 ��dR� = 0 �27�

For n=1 it coincides with the equation presented in �5,10� for the
Newtonian fluid. In the case of steady-state flow, the leading order
equation can be presented in the following form:

�

�
�h − sgn�cos 
�h2
0

1

yG�h�cos 
�y�dy� = 0 �28�

Integrating the latter leads to a simple algebraic equation

h − sgn�cos 
�h2
0

1

yG�h�cos 
�y�dy = q , �29�

where the constant of integration, q, represents the nondimen-
sional mass flux within the liquid film �q=q* /r0

2���. Obviously,
solution h=h�
� of Eq. �29� is periodic, even, and symmetric re-
spective to 
=0. Hence, the azimuthal distribution of h can be
represented by its variation on the interval �0,��. Differentiating
Eq. �29� with respect to h and equalizing this derivative to 0 leads
to the equation 1−h sgn�cos 
�G�h�cos 
��=0. Once the solution
of the latter equation h=h*�
� is found, the maximal supportable
mass flux qmax can be readily computed from Eq. �29� setting in it
h=h* and 
=0.

Results and Discussion
For the further analysis of the process it is convenient to intro-

duce a new auxiliary function f by the equation

f�h� = h − sgn�cos 
�h2
0

1

yG�h�cos 
�y�dy − q , �30�

whose derivative with respect to h is the following:

�f/�h = 1 − h sgn�cos 
�G�h�cos 
�� . �31�

Qualitative analysis of function �30� with its derivative �31� for
the subcritical regime �q�qmax� readily shows that �a� at the in-
terval �� /2 ,�� Eq. �29� has the unique solution h=h�
� which
satisfies an inequality 0�h�q and �b� on the interval �0,� /2�
Eq. �29� has two solutions h=h1�
� and h=h2�
�, which satisfy
inequalities q�h1�h* and h2�h*, and h2→� for 
→� /2. Ap-
parently, solution h=h2�
� for this regime has no physical mean-
ing and, hence, should be omitted. Possible distributions of film
thicknesses in the subcritical regime are illustrated in Fig. 2.

Quantitative analysis of Eq. �30� for the critical flow regime
�q=qmax� leads to the following conclusions: �a� for this regime
Eq. �29� reduces to an identity at h=h* and 
=0. Hence, in the
point 
=0 functions h1�
� and h2�
� intersect, i.e., h1�0�=h2�0�
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=h*�0�. �b� h1�
� decreases on �0,� /2�. At 
=0 it reaches maxi-
mal value and for 
→� /2−0, h1→q. In contrast, h2�
� exhibits
monotonous growth on �0,� /2� and h2→� for 
→� /2−0. It
can be readily shown that the unique solution h=h�
� defined on
�� /2 ,�� is a smooth continuation of function h1�
� in the domain
�� /2 ,��. Possible distributions of film thicknesses in the critical
regime are illustrated in Fig. 3.

The critical conditions when solution of the steady-state equa-
tion �29� exists are defined in the terms of critical mass flux, i.e.,
q�qmax. Technologically, it is more natural to operate with such
quantities as a total mass and volume of the liquid inside a cylin-
der or the rate of rotation. To this end, it is sensible to reformulate
the critical condition in terms of the above-mentioned quantities.
The mass of the liquid W* inside the rotating cylinder can be
calculated by the following equation �the asterisks are used to
denote dimensional quantities�:

W* = ���r0
2 − ��r0 − H0

*�2� = ���2r0H0
* − H0

*2� , �32�

where H0
* is a mean thickness of the liquid layer H0

*

= �1/2���0
2� h*d
. Denoting W=W* /��r0

2, H0=1/2��0
2� hd 
 and

staying in the bounds of adopted accuracy �i.e., neglecting the
terms of O����, Eq. �32� can be converted to the following non-
dimensional one:

H0 =
1

2�


0

2�

hd
 =
W

2�
�33�

The mean thickness H0 is obtained by the numerical evaluation of
the integral �33�, where h is the solution of Eq. �29�. H0 is equal to
its critical value Hc when solution h of the equation �29� corre-
sponds to the maximal mass flux q=qmax. For instance, for a New-
tonian liquid Hc is equal to 0.707, which coincides with the results
of the previous authors �1–5�. Thus, summing the above reasoning
one can conclude that steady-state flow can be sustained while the
inequality H0�Hc is satisfied. Accounting for Eq. �33�, the latter
condition can be converted to the form of the run-off condition, as
it was formulated by Moffatt �2� and Preziosi and Joseph �3�. In
the dimensional form this condition is the following:

�W/�r0
2��1/2 � Hc �34�

Equation �34� provides the principal bounds for the steady-state
rimming flow. By introducing the appropriate volume of liquid
inside the cylinder and the speed of rotation, the inequality �34�
should be satisfied. It will guarantee the steady-state flow of the
liquid. However, the steady-state flow can be also sustained even
when the left-hand side of �34� exceeds the value on the right-
hand side, i.e., when H0�Hc. In this supercritical case the discon-
tinuous solution of Eq. �29� is possible and a steady hydraulic
jump may occur �4,5�, which can be the source of further insta-
bilities. Possible distributions of the liquid film thicknesses in the
supercritical regime are illustrated in Fig. 4.

It should be noted that even though the curves on Figs. 2–4 can
be plotted approximately, as a result of qualitative analysis of
functions �30� and �31� for different flow regimes, in fact they
were obtained by exact numerical computations on the basis of the
Ellis model. The Ellis model is one of the simplest models, which
accounts for shear-thinning properties and simulates the Newton-
ian features for the low shear rates. For the Ellis model the inverse
function can be defined explicitly, G�x�=x�1+x1/n−1�, and, hence,
the shear rate-stress relationship can be presented as follows in
nondimensional form �10,11�:

�̇ = − 
R�1 + �Wi�
R��1/n−1� �35�

In Eq. �35� parameter Wi=� / �̇t� is the shear thinning parameter,
where �̇t is a transitional value of shear rate, characterizing either
the Newtonian �for �̇��̇t� or shear-thinning behavior �for �̇��̇t�.
Thus, for the Ellis model, equation �29� reduces to the following:

Fig. 2 Thickness of the liquid film in subcritical flow regime
„a… when q<qmax. Solution is obtained by Eq. „36… for n= 1

3; solid
lines correspond to Wi=5 and dashed lines to Wi=1.

Fig. 3 Thickness of the liquid film in critical flow regime „b…
when q=qmax. Solution is obtained by Eq. „36… for n= 1

3 and Wi
=1.

Fig. 4 Solution of Eq. „36… for supercritical flow regime „c…
when n= 1

3, q=qmax, and H0>Hc; solid lines correspond to Wi
=5 and dashed lines to Wi=1
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h − h3 cos 
�1

3
+

n�Wi�cos 
�h��1−n�/n

2n + 1
� = q, 0 � n � 1.

�36�

Similar to the Carreau-Yasuda model, which was discussed in �7�,
the Ellis model also possesses Newtonian and power-law limits,
though the transition from Newtonian to shear-thinning behavior
is very gradual. For Ellis model the change in the maximal mass
flux qmax vs parameter Wi is illustrated in Fig. 5. For this model,
the interval of the steady-state flow �0,qmax� is wider �higher val-
ues of qmax� for smaller shear-thinning numbers Wi and reduces
with the growth of this parameter. It is interesting to note that for
Wi�1.9 the flow is not affected by the parameter n, which defines
shear-thinning properties of the fluid. For small Wi less than unity
and n�

1
3 the Ellis model provides the same steady-state-flow in-

terval as a Newtonian fluid since qmax� 2
3 . As can be seen from

the Fig. 5, the Ellis model can be used for modeling rimming flow
if n�

1
3 . Only for these flow indexes can the transition from shear

thinning to Newtonian behavior for low shear rates be recovered.
For flow indexes above 1

3 the Ellis model leads to unphysical
results. This phenomenon follows from the Ellis constitutive equa-
tion and definition of the corresponding inverse function G. Sub-
stituting this function into the equation for the maximal liquid
layer thickness h=hc at 
=0, 1−hcG�hcWi� /Wi=0 and ignoring
the terms of higher degree of smallness with respect to Wi�1
yields the asymptotic formula hc=1−Wi1/n−1 /2+o�Wi1/n−1�. Sub-
stituting this approximate expression for hc into Eq. �36� at 
=0
and again ignoring the terms of higher degree of smallness the
critical mass flux can be estimated asymptotically as qmax= 2

3
− �1/ �1/n+2��Wi1/n−1+o�Wi1/n−1�. As it can be readily seen, this
simple asymptotic equation perfectly explains the variation of
qmax for small values of Wi �small shear rates�. If n= 1

3 , the cur-
vature of the curve, which is determined by the second derivative
of the function qmax�Wi�, is finite for 0�Wi�1 and if n�

1
3 , the

curvature of the plot tends to zero in vicinity of Wi=0. On the
contrary, if n�

1
3 , the curvature of the plot tends to infinity as

Wi→0. Hence, for modeling the rimming flow with the Ellis con-
stitutive equation, the restriction n�

1
3 should be satisfied in order

to ensure the Newtonian behavior at the small shear rates �interval
0�Wi�1� and smooth transition to a shear-thinning flow for
Wi�1.

Figure 6 illustrates distribution of the liquid film along the wall
of the cylinder at the critical state q=qmax �curve 1 with corner at

=0� and the subcritical state �curves 2 and 3� computed by Eq.

�36�. The solution for the Ellis liquids below critical values of
mass fluxes are everywhere smooth, the local maximum at 
=0 is
flat, and for q�qmax /2 the thickness is practically uniform, which
is very beneficial to technical applications where the resulting
uniform thickness of the film is of a main concern.

Conclusions

1. The leading order lubrication model can be used for estimat-
ing the limits of steady-state behavior of a liquid film in the
rimming flow of a non-Newtonian fluid. The application of
the generalized Newtonian model for the approximate de-
scription of the flow of a liquid polymer is justified by the
scale analysis.

2. The run-off condition for a generalized-Newtonian fluid on
the wall of a rotating cylinder is derived and used for esti-
mating the flow parameters. The maximum supportable load
allowed by the generalized-Newtonian model, which exhib-
its transition from shear-thinning to Newtonian behavior, is
smaller than for a Newtonian liquid and depends on the flow
index n.

3. While using the Ellis constitutive equation, the restriction
n�

1
3 should be satisfied in order to ensure the Newtonian

behavior at the small shear rates �interval 0�Wi�1� and
smooth transition to a shear-thinning flow for Wi�1.

4. Relatively uniform thickness can be achieved by ensuring
that the rotational moulding process operates substantially
below its critical conditions, for instance by applying the
restriction q�qmax /2. Mathematically exact uniform thick-
ness can be reached only in micro-gravity conditions when
the centrifugal forces dominate.

5. Supercritical regimes can be analyzed within the bounds of
leading order model; locations and dimensions of the hy-
draulic jumps can be detected.

Nomenclature
CB � inverse to the Bond number
D � full derivative
e � rate of deformation tensor

er ,e
 � radial and azimuthal axes vectors, respectively
g � gravity vector
G � inverse function to ���̇��̇

H0 � nondimensional mean thickness of the liquid
layer

Hc � nondimensional critical mean thickness of the
liquid layer

h � nondimensional thickness of the liquid layer

Fig. 5 Variation of the critical mass flux in the Ellis liquid film
with respect to Wi for different values of flow index n
=0.8,0.5,0.3,0.1

Fig. 6 Thickness of the Ellis liquid film along the wall of the
cylinder for Wi=1 and n= 1

3; „1… q=qmax, „2… q= 3
4qmax, and „3… q

= 1
2qmax
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h0 � characteristic thickness of the liquid layer
n � normal to the free surface
p � nondimensional pressure
q � nondimensional mass flux
r � nondimensional radial coordinate as defined by

Eqs. �6�
ro � radius of the cylinder
R � modified nondimensional radial coordinate= �1

−r� /�
Re � Reynolds number

t � nondimensional time
v � nondimensional fluid velocity

vr ,v
 � nondimensional radial and azimuthal compo-
nents of the fluid velocity, respectively

W � total mass of the liquid
Wi � shear-thinning number �Wi=� / �̇t��

Greek Symbols
� � ratio of the characteristic liquid layer thickness

and radius of the cylinder
�̇ � nondimensional shear rate
�̇t � nondimensional transitional value of shear rate
� � mean curvature of the free surface
� � dynamic viscosity

 � azimuthal coordinate
� � liquid density
	 � surface tension
 � nondimensional deviator of the stress tensor


R ,RR ,

 � nondimensional components of 
� � angular velocity of the cylinder

Superscripts
* � dimensional quantities

0,1 � zeroth- and first-order approximations,
respectively

Subscripts
0 � characteristic quantity


 ,r � azimuthal and radial components, respectively
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Experimental Study on the Helical
Flow in a Concentric Annulus
With Rotating Inner Cylinder
This experimental study concerns the characteristics of vortex flow in a concentric an-
nulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is
rotating. Pressure losses and skin friction coefficients have been measured for fully de-
veloped laminar flows of water and of 0.4% aqueous solution of sodium carboxymethyl
cellulose, respectively, when the inner cylinder rotates at the speed of 0–600 rpm. The
results of the present study show the effect of the bulk flow Reynolds number Re and
Rossby number Ro on the skin friction coefficients. They also point to the existence of a
flow instability mechanism. The effect of rotation on the skin friction coefficient depends
significantly on the flow regime. In all flow regimes, the skin friction coefficient is in-
creased by the inner cylinder rotation. The change in skin friction coefficient, which
corresponds to a variation of the rotational speed, is large for the laminar flow regime,
whereas it becomes smaller as Re increases for transitional flow regime and, then, it
gradually approaches to zero for turbulent flow regime. Consequently, the critical bulk
flow Reynolds number Rec decreases as the rotational speed increases. The rotation of
the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.
�DOI: 10.1115/1.2136923�

Keywords: vortex flow, concentric annulus, rotating cylinder, skin friction coefficient

1 Introduction

Rotating flows in annular passages with rotation of the inner
cylinder are important because they have many engineering appli-
cations in bearings, rotating-tube exchangers, and, especially, an-
nulus flows of mud in the case of slim hole drilling of the oil well.

It is well known that the stability of a viscous flow in a small
annular gap between concentric cylinders with rotation of the in-
ner one was first considered experimentally and theoretically by
Taylor �1�. He also found that the flow is stable when the inner
cylinder is stationary and the outer one is rotating. Conversely, if
the outer cylinder is stationary, the flow becomes unstable.
Diprima �2� applied the nonlinear theory to investigate the relation
between the Taylor number and the stability.

Watanabe and Yamada �3� also indicated that the flow is rela-
tively stable when the outer cylinder is rotating, and thus, the
critical bulk flow Reynolds number Rec is larger than that for the
case of the inner cylinder rotating. Nouri and Whitelaw �4� re-
vealed that the value of Rec, decreases as both the rotational Rey-
nolds number Rew and the ratio of eccentricity m increases.

Escudier and Gouldson �5� investigated the influence of rotation
on the axial velocity distribution and knew that it is most apparent
at low bulk flow Reynolds number Re. Delwiche et al. �6� showed
that the variations of an annular gap, wellbore eccentricity, and
shaft rotational speed have strong effect on the pressure loss of
fluid flowing in a narrow annulus of slim hole drilling. Because of
these factors, it is very difficult to calculate accurately and control
pressure losses in slim hole wellbores.

Siginer and Bakhtiyarov �7� carried out an analytical and ex-
perimental study on the flow of glycerol/water mixture and oil
field spacer fluid in an eccentric annulus. Escudier et al. �8� pre-
sented numerical results for the flow of an inelastic shear-thinning
power-law fluid through an eccentric annulus. They also summa-

rized the literature of theoretical and numerical investigations of
laminar flow of non-Newtonian fluids through annular channels.

This paper concerns an experimental study of fully developed
laminar flows of Newtonian and non-Newtonian fluids through a
concentric annulus in combination with bulk axial flow and inner
cylinder rotation. The pressure losses and skin friction coefficients
through the rotating annulus with diameter ratio of 0.52 have been
measured under the fully developed flow condition of water and
of 0.4% carboxylmethyl cellulose �CMC� aqueous solution. The
rotational speed of the inner cylinder is between 0 and 600 rpm.
The axial bulk flow Reynolds number is in range of 100�Re
�12,000. The effects of shaft rotation, flow rate, and fluid rheol-
ogy on the pressure loss, skin friction coefficient, and flow insta-
bility are investigated by the present experimental work. Namely,
the value of critical Reynolds number Rec is obtained for various
combinations of the bulk flow Reynolds number and rotational
speed of the inner cylinder. The effect of rotation on the skin
friction coefficient depends significantly on the flow regime. For
laminar flow regime, the change of skin friction coefficient corre-
sponding to the variation of rotational speed is large, whereas it
becomes smaller as the axial Reynolds number increases for tran-
sitional flow regime. For turbulent flow regime, it gradually ap-
proaches to zero.

2 Data Reduction
The equation of the average axial velocity in a concentric an-

nulus without the rotation can be expressed in terms of the pres-
sure loss dp /dz as follows �9�:

v̄z = �dp

dz
� R2

2

8�
�1 − �4

1 − �2 −
1 − �2

ln�1/��� �1�

where, � �=R1 /R2� is the ratio of radius. Also, the skin friction
coefficient Cf can be obtained as
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Cf =
dp

dz
·

Dh

2�v̄z
2 �2�

where Dh �=2�R2−R1�� is the hydraulic diameter. Equations �1�
and �2� are combined as

Cf =
16

Re
�1 − �4

1 − �2 −
1 − �2

ln�1/����1 − ��2 �3�

where Re �=v̄z
2−nDh

n /�� is the Reynolds number for Newtonian
and non-Newtonian fluids.

3 Experimental Method

3.1 Experimental Apparatus. The experimental setup con-
sists of a cylindrical section, supporting parts, fluid-providing and
rotating part, and measuring part, which measure the flow rate,
pressure loss, and the temperature as shown in Fig. 1. A centrifu-
gal pump delivers the working fluid from a supply tank to a surge
tank. The surge tank located immediately after the pump outlet
acts to remove pulsation in the flow prior to entry into the test
section. The fluid flow into the annular passage with an outer
brass pipe of nominal inside diameter D2 of 38.4 mm and 3.82 m
long and an inner stainless steel rod of diameter D1 of 20 mm. To
insure fully developed flow in the measuring section, the length of
straight pipe upstream of the test section is 2.32 m, corresponding
to 126 hydraulic diameters, in order to produce an artificially
thickened boundary layer. The rotating cylinder with the length of
1.5 m, and the nonrotating counterpart are connected by bronze
bearings in order to prevent vibration and eccentricity caused by
the rotation of the inner cylinder.

Static pressures are measured with holes of 0.5 mm dia distrib-
uted longitudinally in the outer cylinder. Five static pressure taps
are installed along the flow direction in measuring part as shown
in Fig. 1. The static pressures are read from a calibrated manom-

eter bank with ±1 mm resolution. The specific gravity of the ma-
nometer fluid CCl4 is 1.88, and it gives a height in the range of
20–600 mm.

In the experiment, the pressure losses have been measured by

dp

dz
=

gh sin ���ccl4
− ��

�z
�4�

where �, �CCl4
, �, h, and �z denote the density of the fluid, the

density of CCl4, the inclined angle of the manometer, the differ-
ence of head of the manometer, and the distance between pressure
holes, respectively. The experimental values of the skin friction
coefficient in the laminar region can be evaluated by substituting
Eq. �4� into Eq. �2�.

The viscosity of 0.4% CMC solution was measured using the
rotating type viscometer �Brookfield DV-III+ Programmable Rhe-
ometer�. In the case of a nonrotating annulus, we compared the
experimental value of the skin friction coefficient obtained from
the experiment with the theoretical value calculated by Eq. �5�.
For a nonrotating eccentric annulus, the skin friction coefficient
was proposed by Yamada and Watanabe �10� as

Cf =
23.8

Re�1 + 3
2m2� �5�

where m is the eccentricity of an annulus. The measured value has
the discrepancy of 2.3% with the theoretical value. Thus, it is
confirmed that the eccentricity �m� is within 0.12. The outer cyl-
inder and the rotating inner cylinder are supported by an H-beam
of 4 m long construction steel �SK40�.

The flow rate has been measured with a magnetic flow meter
whose accuracy is within the limit of ±0.5%. The temperature of
the working fluid has been measured with a digital multimeter.
The inner cylinder may be rotated at any speed up to a maximum
of 1000 rpm by means of an AC motor. The temperature of the
fluid within the pipe rig is maintained at 25±0.5°C.

3.2 Experimental Method. The development of the flow is
identified by the change of the axial pressure gradient. Therefore,
the value of pressure losses with Reynolds number has been mea-
sured between the tap 1 and taps 2–5 along the z direction of Fig.
1 to check the development of the flow.

In the case of water, the measured pressure losses along the
flow of the z direction at each tap are shown in Fig. 2 to confirm
the development of the flow with various Reynolds numbers.
Since the measured values of �P1,2 and �P1,3 have large errors
due to the short distances between taps, experiments have been
repeated several times to minimize the errors. For Re�1000, the

Fig. 1 Schematic diagram of experimental apparatus „all di-
mensions in meters…

Fig. 2 Pressure differences of water as a function of z with
various Re
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maximum uncertainties are less than ±6% and ±3% for the flow
of water and of 0.4% CMC solution, respectively.

3.3 Properties of Working Fluid. Non-Newtonian fluids are
those for which the strain rate and shear stress curve are not linear,
i.e., the viscosity of non-Newtonian fluids is not constant at a
given temperature and pressure but depends on other factors, such
as the rate of shear in the fluid, the apparatus in which the fluid is
contained, or even the previous history of the fluid.

In the case of 0.4% CMC solution, n	1 and the power law
relating the shear stress 
 to the shear rate � is given by


 = k� n �6�

where n is the flow behavior index and K is the consistency factor.
The apparent viscosity �a for a power-law fluid may be expressed
in terms of n and K as follows:

�a = k� n−1 �7�
The effective viscosity of 0.4% CMC solution for the same flow

rate of 6 lpm becomes 22 cp at 0 rpm and 18 cp at 200 rpm and n
is measured as 0.76.

4 Results and Discussion
The relations between the pressure loss dp /dz and Re are

shown in Fig. 3�a�, for the various rotational speeds in the range
of water flow rate 1–40 lpm. Also, the relations between Cf and
Re are shown in Fig. 3�b�. In laminar flow regime without rota-
tion, the variation of Cf with water is similar to those of Nouri and
Whitelaw �4� and Shah and London �11�.

In the case of water, it is difficult to measure the pressure loss
accurately because it is so small at low Reynolds number. The

errors of Cf have appeared at the maximum of ±7% for Re
	1000 and ±5% for Re�1000. However, in the case of 0.4%
CMC solution, it is relatively easy to measure the pressure loss
since its viscosity is larger than that of water. In this case, the
errors of Cf are less than ±3% for all laminar flow regimes.

The measurement of pressure loss for 0.4% CMC solution has
been carried out for 1–50 lpm. Figures 4�a� and 4�b� show the
effects of rotation on dp /dz and Cf, respectively, for 0.4% CMC
solution. The critical Reynolds number for 0.4% CMC solution is
found to be slightly lower than that for water because of the dif-
ferent viscosity at the same rotational speed.

4.1.1 Laminar Regime. Laminar flow regime has been con-
fined to the range of Re	Rec, where, the critical Reynolds num-
ber Rec decreases with the increase of rotational speed as shown
in Fig. 5. From the experimental results of pressure losses for both
water and 0.4% CMC solution, the gradient of the skin friction
coefficients is almost unchanged, which is irrespective of the
change of the rotational speed N	200 rpm, but it becomes
steeper for N�300 rpm as shown in Figs. 3 and 4. This is due to
the change of flow regime from laminar to laminar-Taylor
vortices.

The relative skin friction coefficient Cf
* is defined as Eq. �8�.

Where, suffixes s and R represents the skin friction coefficient for
non-rotation and that for rotation, respectively.

Cf
* = ��Cf ,R − Cf ,s�/Cf ,R� �8�

In the case of water, we can obtain Cf
* by Eq. �8� as shown in

Fig. 6�a�. The value of Cf
* significantly increases from 40 to 76%

in the laminar regime as N increases from 100 to 400 rpm. On the

Fig. 3 „a… Pressure losses and „b… skin friction coefficients of
water as a function of Re at 0–600 rpm Fig. 4 „a… Pressure losses and „b… skin friction coefficients of

0.4% CMC solution as a function of Re at 0–600 rpm
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other hand, in the case of 0.4% CMC solution as shown in Fig.
6�b�, the value of Cf

* slightly increases from 4 to 26% as N in-
creases from 100 to 600 rpm. That is, the influence of the rota-
tional speed on the skin friction coefficients for 0.4% CMC solu-
tion is relatively weaker than that for water because of the differ-
ence of rheological characteristics. Note that the Rossby number
is defined as Re /Re, which represents the ratio of the inertial

force to the Coriolis force.
Variations of the pressure losses with Reynolds number and

rotational speed for 0.4% CMC solution are shown in Fig. 5. The
previous researchers also observed that laminar-Taylor vortex ex-
ists in the range of 131�Re�927 �12�. It is found from the
present results that the laminar-Taylor vortex exists in the range
0�Re�Rel,t. The value of Rel,t increases as N increases. If the
bulk flow increases for Re�Rel,t, the flow belongs to the laminar
flow regime where the Taylor vortex has the least influence.

Figures 7 and 8 show the relation between Cf Re and Ro for
water and 0.4% CMC solution, respectively. The effect of rotation
with axial flow on the axial pressure loss in a rotating annulus can
be explained with these figures. The skin friction coefficient can
be correlated with Ro and Re as Eq. �9� for water and Eq. �10� for
0.4% CMC solution, asymptotically.

The index on Rossby number indicates the effect of rotation.
From the Eqs. �9� and �10�, we can also see that the effect of
rotation on the pressure losses is larger in water than in 0.4%
CMC solution. The deviation of experimental data with the corre-
lations is within ±9%.

Cf Re = 45.3 Ro−0.44 �9�

Cf Re = 77.3 Ro−0.10 �10�

4.1.2 Transitional Regime. It is evident from the experimental
results of 0.4% CMC solution that the critical Reynolds number is

Fig. 5 Pressure losses of 0.4% CMC solution as a function of
Re at 200–600 rpm

Fig. 6 Normalized relative skin friction coefficients Cf
* of water

and 0.4% CMC solution as a function of Re at 100–600 rpm: „a…
water and „b… 0.4% CMC solution

Fig. 7 Relation of Cf Re with Ro for laminar flow in water

Fig. 8 Relation of Cf Re with Ro for laminar flow in 0.4% CMC
solution
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dependent on the rotational speed and Rossby number as shown in
Fig. 5. The value of axial critical Reynolds number decreases as
the rotational speed of the inner cylinder N increases. Namely, the
critical Reynolds number decreases as Rossby number decrease.

When Cf
* is used to express the influence of N on the skin

friction coefficients in a transition regime, Cf
* is consistently un-

changed in the laminar regime as seen in Fig. 6. But, Cf
* tends to

increase in a transition regime for Re�Rec, and to decrease
abruptly in a turbulent regime. However, this tendency decreases
as N increases due to the Taylor vortex. In the case of water at
N=100 rpm, the relative skin friction coefficient is about 65% due
to the rotation.

5 Conclusions
In this study, the effects of the rotational speeds, the flow rates,

and the working fluids on the pressure losses and skin friction
coefficients have been investigated experimentally for the rotating
flow between the stationary outer cylinder and the rotating inner
one. From the present results, the new correlations with the skin
friction coefficients, the Rossby numbers, and Reynolds numbers
of water and 0.4% CMC solution have been presented with the
reasonable limits of the accuracy in the laminar flow region.

It is clear that the critical Reynolds number of 0.4% CMC
solution has a slightly lower value than that of water due to the
difference of rheological characteristics of fluids. The effects of
rotation on water are much greater than on 0.4% CMC solution
because of this rheological difference.

The pressure loss slightly increases as the rotational speed in-
creases although the relative skin friction coefficient Cf

* decreases
as the Reynolds number increases in the regime of the transition
and turbulence.

The value of critical Reynolds number decreases with the in-
creasing of rotational speed. Also, the increase of flow disturbance
caused by the Taylor vortex between the concentric cylinders re-
sults in the decrease of the critical Reynolds number and the in-
crease of skin friction coefficient.
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Nomenclature
Cf � skin friction coefficients
Dh � hydraulic diameter, 2�R2−R1�

dp /dz � pressure loss �Pa/m�
e � displacement of inner cylinder axis from outer

cylinder axis

K � consistency factor �Pa sn�
m � eccentricity, e / �R2−R1�
n � flow behavior index
N � rotational speed of inner cylinder �rpm�

�P � difference of pressure �Pa�
R1 � radius of inner cylinder �mm�
R2 � radius of outer cylinder �mm�
Re � Reynolds number, v̄z

2−nDh
n /�

Rec � critical Reynolds number
Rew � rotational Reynolds number, R1�R2−R1� /v
Ro � Rossby number, 2v̄z /R1
v̄z � average velocity in z-direction �m/s�

�z � distance between pressure taps �mm�

Greek Symbols
� � ratio of radius, R1 /R2
� � absolute viscosity �Pa s�

�a � apparent viscosity
� � kinematic viscosity �m2/s�
� � density of fluid �kg/m3�
 � angular velocity of inner cylinder �rad/s�

References
�1� Taylor, G. I., 1923, “Stability of a Viscous Fluid Contained Between Two

Rotating Cylinders,” Philos. Trans. R. Soc. London, Ser. A, 223, pp. 289–343.
�2� Diprima, R. C. 1960, “The Stability of a Viscous Fluid Between Rotating

Cylinders With a Bulk Flow,” J. Fluid Mech., 366, pp. 621–631.
�3� Watanabe, S., and Yamada, Y., 1973, “Frictional Moment and Pressure Drop of

the Flow Through Co-Axial Cylinders With an Outer Rotating Cylinder,” Bull.
JSME, 16�93�, pp. 551–559.

�4� Nouri, J. M., and Whitelaw, J. H., 1994, “Flow of Newtonian and Non-
Newtonian Fluids in a Concentric Annulus With Rotation of the Inner Cylin-
der,” ASME J. Fluids Eng., 116, pp. 821–827.

�5� Escudier, M. P., and Gouldson, I. W., 1995, “Concentric Annular Flow With
Centerbody Rotation of a Newtonian and a Shear-Thinning Liquid,” Int. J.
Heat Fluid Flow, 16, pp. 156–162.

�6� Delwiche, R. A., Lejeune, M. W. D., and Stratabit, D. B., 1992, “Slimhole
Drilling Hydraulics,” SPE Paper No. 24596, pp. 521–541.

�7� Siginer, D. A., and Bakhtiyarov, S. I., 1998, “Flow of Drilling Fluids in Ec-
centric Annuli,” J. Non-Newtonian Fluid Mech., 78, pp. 119–132.

�8� Escudier, M. P., Oliveira, P. J., and Pinho, F. T., 2002, “Fully Developed
Laminar Flow of Purely Viscous Non-Newtonian Liquids Through Annuli,
Including the Effects of Eccentricity and Inner-Cylinder Rotation,” Int. J. Heat
Fluid Flow, 23, pp. 52–73.

�9� Bird, R. B., Lightfoot, E. N., and Stewart, W. E., 1960, Transport Phenomena,
pp. 34–70.

�10� Yamada, Y., and Watanabe, S., 1973, “Frictional Moment and Pressure Drop of
the Flow Through Co-Axial Cylinders With an Outer Rotating Cylinder,” Bull.
JSME, 12�93�, pp. 551–559.

�11� Shah, R. K., and London, A. L., 1978, Laminar Flow Forced Convection,
Academic Press, New York.

�12� Wereley, S. T., and Lueptow, R. M., 1998, “Spatio-Temporal Character of
Non-Wavy and Wavy Taylor-Couette Flow,” J. Fluid Mech., 364, pp. 59–80.

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 117

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. Jovanović
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On the Mechanism Responsible
for Turbulent Drag Reduction by
Dilute Addition of High Polymers:
Theory, Experiments,
Simulations, and Predictions
Turbulent drag reduction by dilute addition of high polymers is studied by considering
local stretching of the molecular structure of a polymer by small-scale turbulent motions
in the region very close to the wall. The stretching process is assumed to restructure
turbulence at small scales by forcing these to satisfy local axisymmetry with invariance
under rotation about the axis aligned with the main flow. It can be shown analytically that
kinematic constraints imposed by local axisymmetry force turbulence near the wall to
tend towards the one-component state and when turbulence reaches this limiting state it
must be entirely suppressed across the viscous sublayer. For the limiting state of wall
turbulence, the statistical dynamics of the turbulent stresses, constructed by combining
the two-point correlation technique and invariant theory, suggest that turbulent drag
reduction by homogeneously distributed high polymers, cast into the functional space
which emphasizes the anisotropy of turbulence, resembles the process of reverse transi-
tion from the turbulent state towards the laminar flow state. These findings are supported
by results of direct numerical simulations of wall-bounded turbulent flows of Newtonian
and non-Newtonian fluids and by experiments carried out, under well-controlled labora-
tory conditions, in a refractive index-matched pipe flow facility using state-of-the art
laser-Doppler anemometry. Theoretical considerations based on the elastic behavior of a
polymer and spatial intermittency of turbulence at small scales enabled quantitative
estimates to be made for the relaxation time of a polymer and its concentration that
ensure maximum drag reduction in turbulent pipe flows, and it is shown that predictions
based on these are in very good agreement with available experimental data.
�DOI: 10.1115/1.2073227�

1 Introduction
Turbulent drag reduction due to the addition of small amounts

of dilute polymers to flowing liquids has been known for more
than 50 years. This phenomenon was discovered by Toms in 1948
and owing to his pioneering contribution it is often termed Tom’s
effect in the literature. In spite of enormous research efforts in
recent decades in attempts to provide at least a qualitative under-
standing of the mechanisms involved, no satisfactory explanation
has yet been obtained. In this respect, the early studies of Metzner
and Park �1�, Lumley �2,3�, Virk �4�, and Berman �5� and the more
recent contributions of Tabor and Gennes �6�, Ryskin �7�, Thiru-
malai and Bhattacharjee �8�, and Sreenivasan and White �9�
should be mentioned.

Only recently, with advances in optical measuring techniques,
has it become possible to measure turbulence in polymer drag
reducing flows. The experimental work of Rudd �10� and Logan
�11� and subsequent contributions of Reischman and Tiederman
�12�, Luchik and Tiederman �13�, Walker and Tiederman �14�,
Willmarth et al. �15�, Wei and Willmarth �16�, and Warholic et al.
�17� provided important information on modifications of the sta-
tistical properties of turbulence in wall-bounded flows by presence
of polymer additives. Most of these experimental investigations
were carried out for a low percentage of drag reduction �DR�. The
mean velocity profile was found not to follow a classical log law.

The root mean square of the streamwise and normal velocity fluc-
tuations, normalized with the wall friction velocity determined for
the polymer flow, were larger and lower, respectively, than in
Newtonian liquid. These trends became more pronounced as DR
increased. For large DR, experiments showed that the turbulent
shear stress is approximately zero, indicating that turbulence is not
maintained by the well-known mechanism �which ensures that
rates of energy generation and viscous dissipation are in balance�
and that the persistence of turbulence is associated with the sta-
tistical dynamics of extra polymer stresses.

In order to gain a more detailed insight into the phenomena of
polymer drag reduction, direct numerical simulations have been
performed by Toonder et al. �18�, Sureshkumar et al. �19�, Dim-
itropulos et al. �20�, Sibilla and Baron �21�, Angelis et al. �22�,
and Dubief �23�. These numerical studies provided considerable
information about the behavior of turbulence in the presence of a
polymer solution in the flow: the influence of a polymer on the
mean flow and turbulence stresses and their detailed budgets in-
cluding instantaneous three-dimensional flow patterns. These
simulations, like those of Newtonian turbulence, cannot them-
selves lead to improved understanding without a firm theory ca-
pable of distinguishing the cause from the consequence. A lack of
generally accepted and well-supported theory for the remarkable
evidence that one drop of a long-chain polymer properly mixed
with a few hundred liters of liquid can reduce up to 80% of fric-
tion drag in a pipe flow illustrates the huge gap that exists in our
current knowledge of wall turbulence. This situation immediately
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suggests that something substantial and very fundamental can be
learned about turbulence by studying the mechanism of polymer
drag reduction.

The theory of turbulent drag reduction in simple, nearly parallel
wall-bounded flows with homogeneous distribution of the poly-
mer can be worked out proceeding from the basic equations that
govern the turbulent stresses and by using �but not misusing� the
turbulence closure based on the application of the two-point cor-
relation technique and invariant theory �24�. Conclusions emerg-
ing from the theory can be tested by direct comparisons with
numerical simulations or experiments. The mechanism respon-
sible for large drag reduction can be identified without appeal to
the empirical input or auxiliary approximation. However, its de-
scription might not be digestible for those who reason about tur-
bulence �in a deterministic fashion� exclusively in the physical
space where observations usually take place: exposition and usage
of arguments and resulting deductions may therefore seem unrea-
sonable, confusing, or entirely wrong. If the matter is analyzed in
the functional space formed by the two scalar invariants which
emphasize the anisotropy of turbulence, the problem of large drag
reduction turns out to be the first one to attack because of its
simplicity, and specific and unconventional usage of arguments
then appears logical and transparent.

Knowing the mechanism of turbulent drag reduction in ad-
vance, it became necessary to reverse the order of reasoning to
arrive at the conceptual scenario of how long-chain polymers in-
teract with turbulence. By arguing in the real space and the func-
tional space �25� it is possible to specify this interaction in the
form of kinematic constraints and to show how these constraints
force suppression of turbulence close to the wall, leading to sig-
nificant drag reduction.

2 The Mechanism of Homogeneous Polymer Drag
Reduction

The problem of polymer drag reduction remains poorly under-
stood mainly because the interaction between a polymer and tur-
bulence is essentially at the molecular level of the former. This

interaction involves modification of the molecular structure of a
polymer by turbulent motions in the near-wall region. Figure 1
shows a conceptual scenario where, under very special circum-
stances, turbulence in the near-wall region forces rolled-up chains
of a polymer to partially unroll and stretch in the mean flow di-
rection.

In the unrolled state, polymer chains dictate characteristic
length scales associated with the fine structure of turbulence.
These scales are elongated in the streamwise direction and are
therefore strongly anisotropic. In the most extreme case, polymer
chains form a filament structure with a length-scale arrangement
which is almost axisymmetric around the axis aligned with the
mean flow. Hence it is reasonable to assume that the mechanism
of drag reduction is related to the ability of the activated polymer
to restructure turbulence at small scales by forcing them to satisfy
constraints imposed by local axisymmetry.

Local axisymmetry as illustrated in Fig. 1 requires that the sta-
tistics of higher-order velocity derivatives, which contribute to the
turbulent dissipation correlations, must satisfy invariance under
rotation about the axis orientated in the mean flow direction �see
�25��.

In the near-wall region, the presence of the polymer increases
not only the anisotropy in length scales but also anisotropies in the
dissipation and turbulent stresses, since these are closely related
across the viscous sublayer. This can be shown using the two-
point correlation technique and invariant theory �24�. If the poly-
mer concentration �c� and its relaxation time �tpol� are appropri-
ately matched to the properties of turbulence, it will undergo
considerable modification and reach, at the wall, a state of maxi-
mum anisotropy. This state can be identified on the anisotropy-
invariant map shown in Fig. 2 and corresponds to the one-
component limit �IIa=2/3�. For these limiting conditions
Jovanović and Hillerbrand �25� provided an analytical proof
which shows that if turbulence �at small scales� close to the wall is
locally axisymmetric as illustrated in Fig. 1, it must undergo very
rapid laminarization and therefore considerable drag reduction

Fig. 1 Behavior of a polymer in solution at equilibrium „top… and its response to stretching by turbulent
motions at small scales very close to the wall „bottom…. Here RN and RF are hydrodynamical and Flory
radius, respectively.
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owing to suppression of the turbulent dissipation rate �, which,
under common circumstances, reaches a maximum at the wall
�see Fig. 3�.

For an extreme situation, when �IIa�wall→2/3 and ���wall→0,
the statistical dynamics of the turbulent stresses constructed by
combining the two-point correlation technique and invariant
theory written in Cartesian notation �24�:1

�1�

�2�

�3�

�4�
suggest that the viscous diffusion process can almost be neglected,
�2uiuj /�x2

2→0, forcing turbulence to tend towards the axisymmet-
ric state with the streamwise intensity larger than in the other two
directions, u1

2�u2
2=u3

2. Since in axisymmetric turbulence there is
no shear stress u1u2, it is to be expected that for large DR there
will be no traditional mechanism of the energy production Pk=

−u1u2� Ū1 /�x2 which ensures self-maintenance of turbulence in
wall-bounded flows.

The system �1�–�4� therefore permits an insight into the two
important issues of turbulent drag reduction that need to be dis-
tinguished: modifications of turbulence induced in the region of
the viscous sublayer are of a causal nature and the significant
reduction of turbulent energy production in the flow region away
from the wall is a consequence of the mechanism associated with
drag reduction. Under these circumstances, turbulence can persist
in polymer flows only if interaction between the polymers and
turbulence induces additional polymers stresses. Thus, the evolu-
tion of turbulence in drag-reducing flows resembles the reverse
transition process in the limit when Re→ �Re�crit as illustrated in
Fig. 4.

The specific process by which an increase in the anisotropy of
turbulence influences drag reduction is related to the ability of
dilute flexible polymers to decrease the contribution of turbulence
to the average energy dissipation rate. For a pipe flow this can be
expressed as the rate of work done against the wall shear stress
per unit mass of fluid:

�̄ �
�w�DLŪB

��
1
4LD2

=
4ur

2ŪB

D
, �5�

where D and L are the pipe diameter and its length, respectively,

ŪB represents bulk velocity, �w corresponds to the wall shear

stress, �w=���Ū1 /�x2�wall, and u� is the wall friction velocity, u�

= ��w /��1/2. From this equation, we may conclude that for a given

mean flow �ŪB� and pipe diameter �D�, only a decrease in �̄ en-

1In �1�–�4� Pij =−uiuk� Ūj /�xk−ujuk� Ūi /�xk represents the production of the tur-
bulent stresses by mean motion, x2 measures the distance from the wall, �h is the
homogeneous part of the turbulent dissipation rate defined by �10�, and A, C, and F
are scalar functions that depend on the anisotropy invariants and the turbulent Rey-
nolds number.

Fig. 3 Distribution of the turbulent dissipation rate � versus
distance from the wall, normalized on the inner variables u� and
�, in a plane channel flow „DR=0… from direct numerical simu-
lations of Kim et al. †28‡, sketched � profiles for nonvanishing
DR, and the limiting state at the wall for maximum DR

Fig. 2 Anisotropy-invariant map of the tensor aij=uiuj /q2

−1/3�ij and the limiting values of scalar invariants IIa=aijaji and
IIIa=aijajkaki for the different states of the turbulence, after Lum-
ley and Newmann †26‡. Here uiuj is the Reynolds stress tensor
and q2 is its trace q2=usus. According to Lumley †27‡, all real-
istic turbulence must exist within the area delineated by the
map.
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sures drag reduction. It is therefore not surprising that measure-
ments of the energy spectra of turbulence in drag-reducing flows
display attenuation of fluctuations at high wave numbers �small-
scales� across the entire flow �17�. These fluctuations contribute
substantially not only to �̄ but also to the dynamics of the dissi-
pation process, which are extremely complicated.

In this paper, we first present the analytical result which illus-
trates implicitly the mechanism involved in turbulent drag reduc-
tion. The basics were derived in the work of Jovanović and Hill-
erbrand �25� in connection with the flow control of a laminar
boundary layer at very high Reynolds numbers and formed the
basis for experimental investigations of turbulent drag reduction
using uniformly distributed polymer additives. These investiga-
tions confirmed the major conclusion which emerged from the
above-mentioned theoretical work, namely that the mechanism of
drag reduction is associated with an increase in anisotropy of tur-
bulence at the wall.

This paper also provides consideration of the two most impor-
tant issues related to maximum turbulent drag reduction for pipe
flows: determination of the relaxation time of a polymer and its
concentration. Following the elastic theory, the relaxation time of
a polymer �tpol� is determined by requiring that it should be larger
than the characteristic time-scale of turbulent motions in the dis-
sipation range �tK�. Since the small-scale structure of turbulence in
the dissipation range is universal, the concentration of a polymer
is determined from its spatial extent using well-established rela-
tions which hold in isotropic turbulence and the experimental evi-

dence that the mean separation between regions associated with
motions at Kolmogorov’s scale is comparable to the integral
length-scale of turbulence.

3 The Limiting State of Turbulence at the Wall
Using the two-point correlation technique, it is possible to show

and demonstrate, utilizing experimental �35� or numerical data-
bases �36�, that local axisymmetry for the small-scale part of tur-
bulence must hold by definition in axisymmetric turbulence in
order to satisfy the constraint of coincidence for the two-point
correlations �37,38,24�. Logic, following the basics of invariant
theory introduced by Lumley �27�, suggests that we may expect
fluctuations in the near-wall region to satisfy constraints imposed
by the local axisymmetry when these tend asymptotically towards
the one-component limit. This limit corresponds to the vertex on
the right-hand side of the anisotropy-invariant map, shown in Fig.
2, where the axisymmetric state merges with the two-component
state of the fluctuations. For this very special case, two-
component, turbulent motions close to the wall must additionally
satisfy axisymmetry at large and small scales, which are closely
interrelated �39�, and therefore also constraints imposed by local
axisymmetry.

Using the Taylor series expansion of the instantaneous velocity
fluctuations about the wall which satisfies the continuity equation
as presented by Monin and Yaglom �40� and inserting it into the
relation for statistics of the velocity derivatives that were derived

Fig. 4 Anisotropy invariant mapping of turbulence in a channel flow reproduced
from †28–33‡. Data which correspond to low Reynolds number „based on the chan-
nel half-width and the wall friction velocity… show the trend as Re\ „Re…crit towards
the theoretical solution valid for small, neutrally stable, statistically stationary axi-
sysmmetric disturbances †34‡. The shading indicates the area occupied by the
stable disturbances: for such disturbances it is expected that the laminar regime
in a flat plate boundary layer will persist up to very high Reynolds numbers.
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by George and Hussein �41� for fluctuations locally invariant to
rotation about the x1 axis, it can be shown that all coefficients of
the series expansion must vanish in order to satisfy constraints
imposed by the local axisymmetry. We may conclude, therefore,
that inhomogeneous but locally axisymmetric turbulence, whose
statistical properties in the dissipation range are invariant under
rotation about the axis aligned with the mean flow direction, must
vanish in close proximity of solid boundaries. Therefore, also the
dissipation rate, �=���ui /�xk�2, at the wall will vanish, causing
significant suppression of turbulence in the near-wall region. The
expectation that the turbulent dissipation rate at the wall tends to
zero as the one-component limit is approached is confirmed by all
available data from direct numerical simulations as shown by Jo-
vanovic and Hillerbrand �25�.

Figure 5 shows trajectories of the joint variation of the invari-
ants of aij across the anisotropy-invariant map from the numerical
database of drag-reducing, fully developed, turbulent channel flow
from Dimitropoulos et al. �20�. This figure confirms that with
increasing drag reduction �DR�, which is accompanied by sup-
pression of wall turbulence �17�, the point that corresponds to the
position at the wall x2=0 moves upwards in the direction of the
one-component limit.

This example along with the DNS data sets for Newtonian
flows analyzed by Jovanović and Hillerbrand �25� strongly sup-
port the major conclusion which emerges from the statistical
analysis: the most effective way to suppress turbulence in the
near-wall region and achieve large drag reduction is to force the
velocity fluctuations to be predominantly one-component near the
wall.

4 Determination of the Relaxation Time of a Polymer
for Maximum Drag Reduction

In the previous section, we provided an explanation for the
physical mechanism that causes turbulent drag reduction by ho-
mogeneously distributed polymers. It is associated with modifica-
tions of turbulence at small scales by changes in the molecular
structure of a polymer. It is therefore reasonable to assume that
turbulent motions at high wave numbers are responsible for inter-
action between turbulence and a polymer. These motions are char-
acterized by Kolmogorov’s length scale, defined as

�K = ��3

�
�1/4

, �6�

and additional scales which can be derived from � and �K:

• velocity scale uK=� /�K
• time scale tK=�K

2 /�,
• pressure scale pK=��2 /�K.

To ensure that the polymer produces drag reduction, the charac-
teristic time scale of turbulence �ttur� tK� must be smaller than the
relaxation time of a polymer �tpol� in order to activate rolled-up
chains of a polymer to unroll and in this way initialize drag re-
duction �2�. This requirement may be formulated in the form

tK 	 tpol. �7�

Using the well-known relationship for interpretation of the turbu-
lent dissipation rate in terms of the energy �2k=q2=usus� and the

Fig. 5 Anisotropy-invariant mapping of turbulence in a fully developed channel flow with drag
reduction from direct numerical simulations of Dimitropulos et al. †20‡. The trend in the data at the
wall „x2=0… strongly supports the conclusion that DR increases as turbulence approaches the
one-component limit.
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Taylor microscale �
� that holds in homogeneous turbulence,

� = 5�
q2


2 , �8�

from �6� we find

tK =
�5

5




q
. �9�

It is possible to show, using the two-point correlation technique
developed by Jovanović et al. �42�, that the turbulent dissipation
rate in wall-bounded flows may be interpreted in terms of the
Taylor microscale as follows:

�10�

Exploring the series expansion for the instantaneous velocity fluc-
tuations about the wall �22,42�, it is possible to show that 
 and q
are linear functions of the distance from the wall:

	
 = �10x2,

q = �a1
2 + c1

2x2,

 as x2 → 0. �11�

For pipe and channel flows, experimental investigations and nu-
merical simulations indicate that the limiting behavior of turbu-
lence intensities close to the wall is nearly independent of the
Reynolds number �43,44�:

	�u1
2/Ū1 � 0.4,

�u3
2/Ū1 � 0.2,


 as x2 → 0. �12�

This behavior yields

a1
2 � 0.16

u�
4

�2 , �13�

c1
2 � 0.04

u�
4

�2 . �14�

From the above limiting behavior of intensity components close to
the wall, we deduce from �9� the time scale tK of turbulence at the
wall:

�tK�wall � �10
�

u�
2 . �15�

Another estimate of the time scale tK follows from consideration
of turbulence at the pipe centerline. For this flow region, experi-
ments show that all three intensity components are nearly equal
and scale with the wall friction velocity �43,54�:

�u1
2 � �u2

2 � �u3
2 � 0.75u�. �16�

This experimental evidence suggests the relation for the upper
estimation of the time scale tK:

�tK�center � 0.265�Re
�center
�

u�
2 , �17�

where �Re
�center is the turbulent Reynolds number Re
=q
 /� at
the pipe centerline, which can be calculated approximately using
the correlation suggested by Jovanović and Pashtrapanska �46�:

Re
 � 1.996�u�D

�
�1/2

+ 0.108. �18�

By requiring that the relaxation time of the polymer tpol is larger
than �15� and smaller than or equal to �17�,

�10
�

u�
2 � tpol 	 0.265�Re
�center

�

u�
2 , �19�

we obtain the condition that needs to be fulfilled in order that
polymer molecules become substantially elongated, resulting in
maximum drag reduction. The lower bound for tK �15� is far more
representative than the upper bound �17�, since effects close to the
wall are of the causal nature for nearly all production of turbu-
lence in wall-bounded flows and therefore strongly influence its
contribution to the viscous drag.

Figure 6 shows experimental results of Durst et al. �45� for
polymer drag reduction, defined in terms of the dimensionless
coefficients of resistance 
:

�p

L
=




D

1

2
�ŪB

2 , �20�

for the solvent �
s� and a dilute polymer solution �
p� versus the
Deborah number:

De =
tpol

�/u�
2 . �21�

These experimental results, which were obtained in a turbulent
pipe flow at moderate Reynolds numbers, confirm that maximum
drag reduction is already reached when the Deborah number ex-
ceeds a value of about De�10. This finding is in close agree-
ment with the conclusion that emerges from the time-scale argu-
mentation discussed above and is in agreement with the lower
bound of the constraint derived �19� for the relaxation time of a
polymer. Considering that the molecular weight of a polymer �M�
is distributed according to the probability density distribution the
onset of drag reduction at De�0.5 is not surprising. If the right-
hand side tail of the probability density distribution of the molecu-
lar weight of a polymer extends to three times of the mean value

�M̄�, then the requirement tpol �tK�wall, which corresponds to M̄,
together with the Zimm relation for tpol suggests that the onset of
drag reduction starts already at De�0.44 �see also Fig. 1�.

5 The Optimum Concentration of a Polymer
If we assume that the entire interaction between a polymer and

turbulence is localized in the dissipation range of the spectrum,
this implies that the volume occupied by fluid motions which
scale with Kolmogorov’s variables ��k, tK, uK, and pK� should be
equal to the volume of a polymer in order to obtain maximum

Fig. 6 Drag reduction in pipes of different diameters versus a
polymer time scale normalized by a viscous time scale � /u�

2 in
a fully developed turbulent pipe flow „from Durst et al. †45‡… and
the predicted value of a Deborah number for the maximum drag
reduction effect
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drag reduction. Since the small-scale structure of turbulence is
�believed to be� universal for all turbulent flows, the volume oc-
cupied by it can be determined by considering well-established
results which hold for isotropic turbulence.

For isotropic turbulence at large Reynolds numbers, the turbu-
lent dissipation � may be related to the integral length scale of the
energy containing range by �47,48�

� � 0.192
q3

Lf
, Re
 � 1. �22�

At very low Reynolds numbers, e.g., in the final decay period of
classical grid-generated turbulence, the expression for � can be
derived analytically �49�:

� = 1.959�
q2

Lf
2 , Re
 � 1. �23�

Following the suggestion of Rotta �50�, we combine �22� and �23�
to obtain an interpolation equation for � valid for low and large
Reynolds numbers:

� � 1.959�
q2

Lf
2 + 0.192

q3

Lf
. �24�

Expressing � in terms of Taylor’s microscale, using �8�, with �24�
we are in a position to correlate the length scale ratio 
 /Lf in
terms of the turbulent Reynolds number:




Lf
� − 0.049Re
 +

1

2
�0.009 604Re


2 + 10.208�1/2, �25�

which attains a maximum value of 1.597 when Re
→0 and van-
ishes for R
→�. Using �6� and �8�, the above ratio 
 /Lf can be
transformed to the ratio of Kolmogorov’s length scale to the
length scale Lf:

�K

Lf
� − 0.0327Re


1/2 + 0.3343Re

−1/2�0.009 604R


2 + 10.208�1/2.

�26�
Experimental investigations of statistical properties of the fine
scale structure of turbulence by Batchelor and Townsend �51� and
Kuo and Corrsin �52� reveal that the mean separation between
flow regions in space where turbulent motions correlate well with
Kolmogorov’s length scale is comparable to the �integral� length
scale Lf of turbulence. This finding implies that there is one Kol-
mogorov structure ��K� inside the large-scale structure of turbu-
lence �Lf�, so that the volume occupied by a polymer �c� relative
to the volume of entire fluid �V� can be estimated as follows:

c

V
� ��K

Lf
�3

� �− 0.0327Re

1/2 + 0.3343Re


−1/2�0.009 604Re

2

+ 10.208�1/2�3. �27�
It is important to note that the above expression predicts a de-
crease of c /V with increasing Reynolds number.

Using �18� and �27�, and the Blasius correlation formula for the
friction coefficient, the optimum concentration of a polymer for
the maximum drag reduction effect was predicted for pipe flow
and in Fig. 7 the results are compared with measurements carried
out by Tilli et al. �53� for polyacrylic acid �PAA� dissolved in
water. The predicted concentration is seen to follow very closely
the measurements performed in the Reynolds number range Re
=1.0�104–7.2�104.

6 Experimental Verification of the Mechanism of Poly-
mer Drag Reduction

In order to provide further experimental evidence that supports
theoretical considerations of the mechanism responsible for poly-
mer drag reduction, we decided to initiate an experimental pro-
gram using state-of-the-art laser-Doppler �LDA� measuring tech-
nique. This technique allows accurate experimental data to be

Fig. 7 Measured drag reduction effects at different PAA concentrations in
aqueous solutions as a function of the Reynolds number; from Tilli et al. †53‡.
The solid line represents prediction of the optimum concentration of a polymer
for the maximum drag reduction effect.
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obtained deep inside the viscous sublayer, enabling a quantitative
basis to be formed for the interpretation of the dynamics of tur-
bulence using the tools of invariant theory.

6.1 Test Section and Instrumentation. Measurements were
performed in the refractive index-matched pipe-flow facility at the
Lehrstuhl für Srömungsmechanik in Erlangen. The setup is shown
in Fig. 8. This test rig has been used extensively for different LDA
measurements. It is a closed-loop pipe flow installation driven by
a screw conveyor pump. Flow rates between 0.6 and 20 m3h−1

can be achieved with a tolerance of 1%. With a pipe diameter of
50 mm a maximum Reynolds number of Re=4.4�104 can be
realized. The test section is made of DURAN-50 glass. The flow
was supplied from a large settling tank to the working section that
was located about 4 m downstream, providing a development
length of about 100 pipe diameters. In the present experiments,
the flow was tripped at the pipe inlet to ensure additionally fully
developed flow conditions. A more detailed description of the ex-
perimental apparatus can be found in Durst et al. �43�.

The test fluid �a mixture of two diesel oils� was selected to
match the refractive index of the glass. For simplification of the
measurement and the traversing system, the pipe was mounted in
a rectangular box �made of DURAN 50� through which the refrac-
tive index-matched fluid was also guided. Hence, the displace-
ment of the LDA measuring control volume was directly propor-
tional to the traversing performed.

The LDA measuring system was mounted on a 3-D traversing
table, which could be moved in the plane normal to the pipe axis
by using computer-controlled stepping motors and along the pipe
axis with the help of a manual traversing system. The positions
were read by digital indicators. The arrangement of the LDA op-
tical system and the test section is shown in Fig. 9. The optical

system consisted of a 15 mW helium-neon laser and a double
Bragg cell unit. For measurements in the region away from the
wall Bragg cells were driven at 40.0 and 41.5 MHz, providing a
shift frequency of 1.5 MHz. In the near-wall region measurements
were performed with the Bragg cells operated at 40.0 and 40.3
MHz, providing a shift frequency of 300 kHz. The measuring
control volume was about 60 �m in diameter �minor axis d2� and
had a length of 230 �m �major axis d1�. These values, based on
the e−2 intensity cutoff point, were calculated from

d2 =
4
f

E�dbeam cos���
, �28�

d1
4
f

E�dbeam sin���
, �29�

where E is the beam expansion factor, 
 is the laser wavelength, f
is the focal length of the transmitting lens, dbeam is the diameter of
the unfocused laser beam, and � is half the intersection angle of
the beams.

The LDA system employed was operated in the forward scat-
tering mode. The image of the measuring volume was directed
onto a pinhole in front of an Avalanche photodiode. In order to
minimize the influence of noise on the measured data, the output
signal from this diode was bandpass filtered before being pro-
cessed by a TSI Model 1990 counter.

6.2 Turbulent Pipe Flow Without Polymer Additives. Pre-
liminary measurements without the addition of polymer additives
were performed at a Reynolds number of 3�104 to verify the
accuracy of the measurements. For velocity measurements in the
axial direction, the LDA system was traversed in the vertical di-
rection. By rotating the transmitting optics by 90°, the tangential
velocity component u3

2 was measured in the horizontal and the
radial velocity component u2

2 in the vertical plane. For axial tur-
bulence intensity measurements, the expression �43�

u1
2

meas = u1
2

true +
d2

2

16
�dŪ1

dx2
�

true

2

�30�

was used for correcting the measured data for the finite size of the
measuring control volume. The resulting corrections were of the
order of less than 8% in the near-wall region. The mean velocity
does not require a correction since the leading term of the correc-
tion represents the curvature of the velocity profile, which is neg-
ligible close to the wall. Since the mean velocity in the tangential
and radial direction is approximately zero, no corrections concern-
ing the finite size of the measuring control volume had to be
applied to those quantities. Figure 10 shows the obtained results
for mean velocity and second-order statistics. For measurements
of the fluctuating component in the tangential direction u3

2, the
optical system was arranged in such a way that the major axis of
the elliptical measuring volume was normal to the wall. Therefore,
the spatial resolution in the tangential direction was limited and
prevented measurements closer than �230 �m from the wall. It
can be seen that measurement errors exist in the region x2

+�10.
The dimensionless size of the measuring volume was

d1
+ =

d1u�

�
� 7, �31�

which indicates that it covered not only the near-wall region but
also parts of the wall. With the addition of polymers, u� decreases
drastically. Therefore, the dimensionless size of the measuring
volume decreases and correct measurements of the tangential in-
tensity component in the near-wall region become possible.

The deviations for second-order statistics in the buffer region
and across the outer part of the flow are due to the influence of the
Reynolds number, whereas the turbulence statistics in the viscous
sublayer scale as discussed in detail by Durst et al. �43� and Fis-
cher et al. �44�. The study of Lammers �57� provides additional

Fig. 8 Closed-loop pipe flow test section

Fig. 9 Layout of the LDA optical system

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 125

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



information on the influence of domain size and grid resolution on
the turbulence quantities in the near-wall region obtained by direct
numerical simulation. His results show that the peak value of the
turbulence intensity u1

2 is �weakly� sensitive to the size of the
computational domain in the streamwise direction.

6.3 Turbulent Flow with Polymer Additives. The polymer
can be added to the flow in different ways. It can be injected into
the flow at different concentrations or a homogeneous mixture can
be prepared in advance. In order to guarantee a homogeneous
mixture from the start it was decided to prepare the mixture out-
side the installation. A 50 ppm solution of a FORTUM polymer,
illustrated in Fig. 11, mixed with diesel oil was prepared. This
mixture was stirred slowly for 1 week before distributing it to four
200 1 kegs of diesel oil yielding 5 and 10 ppm solutions, respec-
tively. These solutions were stirred for another 24 h before being
returned to the installation. Since the polymer is sensitive to me-

chanical straining, all these steps were performed very carefully
and slowly. The viscosity was measured for the pure mixture of
the two diesel oils and the 50 ppm solution, yielding a constant
kinematic viscosity of �=3.2�10−6 m s−2.

Since the polymer solution showed a rather short lifetime, with
detectable degradation effects after 1 h of continuous operation, it
was not possible to obtain the entire velocity profile of the flow in
one session of measurements. Owing to the elaborate preparation
procedure of the polymer solutions, the measurement of the entire
velocity profile was abandoned and measurements at one point
inside of the viscous sublayer at a physical wall distance of
150 �m were taken until the polymer had degraded and no further
drag reduction could be observed. Measurements were taken at a
Reynolds number of 2.5�104. This was chosen to be lower than
in the preliminary experiments to increase the size of the viscous

Fig. 10 Measurements at Re�=810 in comparison with experimental results of Durst et al. †43‡ and DNS results of Mansour et al.
†55‡ and Eggels et al. †56‡

Fig. 11 Illustration of the molecular structure of a FORTUM polymer sample
after Koskinen †58‡: MÉ25Ã106 g mol−1, Mdodecane=168.4320 g mol−1, Moctane
=112.2880 g mol−1, l=2Ã1.54 Å, rd/o=C12H24/C8H16=1/3, Nmonomer
=Mpolymer/ †rd/oMoctane+ „1−rd/o…Mdodecane‡
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sublayer. At regular time intervals, a sample of a working fluid
was taken in order to check its kinematic viscosity, which was
found to maintain a constant value.

To quantify drag reduction, which is defined as

DR = 1 −
�w,pol

��

, �32�

it was necessary to determine the wall shear stress �w. This was
accomplished by measuring the mean velocity at a fixed and pre-
determined position from the wall which was always within the
viscous sublayer.

In order to analyze the structure of turbulence in a drag-reduced
flow using invariant theory, the second-order moments are re-
quired. For measurements in the viscous sublayer �x2

+�5� it is
possible to plot data in the anisotropy invariant map using axial
and tangential fluctuation values only. Figure 12 shows DNS re-
sults of Mansour et al. �55� for x2

+�5 plotted in the anisotropy
invariant map: once using all Reynolds stress components and
once using the u1

2 and u3
2 components only. It can be seen that

there is no significant difference in the values obtained.
Therefore, the mean velocity and the fluctuating components u1

2

in axial and u3
2 in tangential direction at a fixed position inside the

region of the viscous sublayer were sufficient for the purpose of
this investigation.

In order to obtain statistically accurate results, measurements
were taken for 4 min at each point. This period corresponds al-
most to the time during which the entire oil circulated once
through the experimental loop and therefore cannot be selected
higher. Sufficient particles were in the oil to measure the turbulent
fluctuations. The data rate of 150 Hz was smaller than the maxi-
mum particle arrival rate �which can be estimated from the flow
velocity and the diameter of the measuring control volume� but
larger than the Kolmogorov frequency estimated from the mean
flow and the average dissipation rate �43�. Thus, 7500 statistically
independent samples were obtained for each measurement point,
resulting in an relative error of 0.6% for the mean velocity and
2.3% for the second-order statistics. Mean velocity and turbulence
intensities in axial and tangential directions were measured for
each of the solutions. Measurements were taken for about 10 h.
Subsequently, the exact location of the measurement control vol-
ume was verified.

The wall shear velocity u� was calculated from the slope of the
measured mean velocity profile in the viscous sublayer. Figure 13

confirms the linear dependence of the mean velocity Ū1 and of the
corrected turbulence intensity u1

2 on the dimensionless wall dis-
tance x2

+=x2u� /�. Additionally, u� was estimated from the Clauser
diagram �u�=0.080 88 m s−1� and using the Blasius formula for
the friction coefficient:

�w

1
2�ŪB

2
= 0.0791� ŪBD

�
�−1/4

. �33�

With a bulk velocity of ŪB=1.40 m s−1 the wall shear velocity
yields u�=0.079 68 m s−1. This value deviates less than 2% from
the calculated value of u�=0.080 96 m s−1.

Results of the measurements with polymer additives are pre-
sented in Figs. 14–16. The higher the concentration of the poly-
mer, the lower is the velocity. This implies a less steep velocity
gradient at the wall, as expected for a drag reduced flow. As time

Fig. 12 DNS data from Mansour et al. †55‡ for x2
+<5 plotted on

expanded scale in the anisotropy invariant map
Fig. 13 Velocity profile and turbulent intensity profile in the
region very close to the wall

Fig. 14 Behavior of the mean velocity with time for degrading
polymer solutions

Fig. 15 Behavior of the axial turbulent intensity component in
degrading polymer solutions

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 127

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



passes, the influence of the polymer vanishes and the value of the
velocity increases until a steady value is reached. The same trend
can be observed in histories of the turbulence intensities.

Owing to polymer addition, the wall shear velocity u� de-
creased drastically. Thus, the initial dimensionless size of the mea-
suring control volume �major axis� was calculated to be

d1
+ =

d1u�,initial

�
� 3.2, �34�

so that precise measurements in the viscous sublayer with x2
+�5

were possible. With degradation of the polymer u� increased and
also the dimensionless size of the measured control volume. At
the point of 30% drag reduction, the major axis d1

+ assumed a
value larger than the thickness of the viscous sublayer. For this
reason, measurements in the viscous sublayer did not yield correct
results for a low percentage of DR. Therefore Fig. 16 and all
results derived from those measurements are limited to DR values
above 30%.

As shown in Fig. 17, drag reduction DR,

DR = 1 −
�w,pol

�w
, �35�

decreased fast within the first 2 h. With an addition of 10 ppm
polymers a maximum drag reduction of 70% could be observed.
The effect had completely vanished after continuous operation for
7.5 h. The highest value of drag reduction with a 5 ppm polymer
concentration was around 50%. For this concentration of polymer,
the effect had disappeared 4 h after the beginning of the

measurements.
The measured data were analyzed by plotting these on the an-

isotropy invariant map. Figure 18 shows the obtained results. The
position of the initial point in the anisotropy invariant map de-
pends on the polymer concentration and induced DR. With higher
concentrations of polymer its location moves closer to the one-
component limit. As shown earlier, the same trend can be ob-
served in Newtonian fluids for decreasing Reynolds numbers �see
Fig. 4�. As time passes, the data indicate a clear tendency to move
downwards along the two-component state from a position close
to the one-component limit toward the isotropic two-component
limit. These results are in close agreement with those obtained
from direct numerical simulations displayed in Fig. 5. The poly-
mer degrades with time and the flow returns to its Newtonian
behavior.

7 Conclusions
Statistical analysis of the dynamic equations for turbulent

stresses, using the two-point correlation technique and invariant
theory, have been performed to investigate polymer drag reduc-
tion phenomena. By considering local stretching of the molecular
structure of a polymer by small-scale turbulent motions in the
region of the viscous sublayer, a conceptual scenario was inferred
from theory for the behavior of a polymer and its interaction with
turbulence that leads to significant drag reduction effects. Accord-
ing to this scenario, the stretching process is responsible for the
restructuring of turbulence at small scales close to the wall by
forcing it to satisfy local axisymmetry with invariance under ro-
tation about the axis aligned with the mean flow. Analytical con-
siderations lead to the conclusion that under these circumstances
turbulence at the wall tends towards the one-component limit and
when it reaches this limiting state turbulence must be entirely
suppressed near the wall. In addition to these findings, qualitative
analysis of the turbulent transport equations, when projected into
the invariant space, suggested that drag reduction by high poly-
mers mimics reverse transition from the fully turbulent state to-
wards the laminar flow state. These analytical deductions were
supported by all available results from direct numerical simula-
tions of wall-bounded turbulent flows including those of non-
Newtonian fluids.

Examination of the statistical dynamics of the turbulent stresses
for conditions of large DR suggests that suppression of the vis-
cous diffusion process at the wall is the major cause for polymer
drag reduction and significant reduction of turbulent energy pro-
duction in the flow region away from the wall can be regarded as
a logical consequence. These effects are reflected in a significant
reduction of the average turbulent dissipation rate �̄ which con-
trols the turbulent drag. These findings are illustrated in Fig. 19,
which shows distributions of the root mean square of the stream-

Fig. 16 Behavior of the tangential turbulent intensity compo-
nent in degrading polymer solutions. The measurement resolu-
tion decreases in time since the dimensionless size of the mea-
suring volume increases; the plotted results are therefore
limited to that time period when the measuring volume did not
extend out of the viscous sublayer

Fig. 17 Drag reduction for different concentrations of a
polymer

Fig. 18 Measurement results plotted on the anisotropy invari-
ant map „together with those shown in previous figure… demon-
strate that with decreasing DR the data points move away from
the one-component limit
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wise vorticity fluctuations ��1
2�1/2, which are the largest contribu-

tion to the turbulent dissipation rate, ����i�i, in a turbulent
channel flow.

Parametrization of the mechanism associated with polymer
drag reduction was accomplished by considering the elastic be-
havior of a polymer and accounting for spatial intermittency of
turbulence at small scales. The analysis assumed that the interac-
tion between a polymer and turbulence is localized in motions at
small scales which are of the intermittent nature and responsible
for the viscous destruction of the turbulent dissipation rate. Favor-
able agreement was obtained between predictions, based on theo-
retical considerations, and available experimental results for the
relaxation timescale of a polymer and its concentration that pro-
duce the maximum drag reduction effect.

High spatial resolution laser-Doppler measurements were per-
formed in a refractive index-matched pipe flow facility in order to
provide additional experimental evidence that supports fundamen-
tals associated with the mechanism responsible for polymer drag
reduction. Special care was taken to maintain well-controlled flow
conditions during the experiments and to account for all possible
interferences that can influence the interpretation of the measured
LDA signals. The experimental results for the mean velocity and
turbulence intensity components obtained deep in the viscous su-
blayer permitted the evolution of turbulence to be traced across
the anisotropy invariant map. Anisotropy-invariant mapping of
turbulence in the viscous sublayer reveals that with decrease of
DR the anisotropy near the wall decreases along the line which
characterizes the two-component state starting from nearly the
one-component limit which correspond to large DR. These obser-
vations, extracted from the experimental results, are in close
agreement with the theoretical analysis and support the notion that
turbulent drag reduction by dilute, homogeneous addition of high
polymers is associated with the ability of long-chain polymers to
induce an increase in the anisotropy of turbulence in close prox-
imity to the wall.
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�35� Schenck, T., and Jovanović, J., 2002, “Measurements of the instantaneous
velocity gradients in plane and axisymmetric wake flows.” ASME J. Fluids
Eng., 124, pp. 143–153.

�36� Antonia, R. A., Kim, J., and Browne, L. W. B., 1991, “Some characteristics of
small-scale turbulence in a turbulent duct flow,” J. Fluid Mech., 233, pp.
369–388.

�37� Chou, P. Y., 1945, “On the velocity correlation and the solution of the equation

Fig. 19 Illustration of the mechanism responsible for polymer
drag reduction utilizing the results of direct numerical simula-
tions of Dimitropulos et al. †20‡

Journal of Fluids Engineering JANUARY 2006, Vol. 128 / 129

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of turbulent fluctuation,” Q. Appl. Math., 3, pp. 38–54.
�38� Kolovandin, B. A., and Vatutin, I. A., 1969, “On statistical theory of non-

uniform turbulence,” Int. J. Heat Mass Transfer, Herceg-Novi, Yugoslavia.
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Theoretical Analysis of the Onset
of Gas Entrainment from a
Stratified Two-Phase Region
Through Two Side-Oriented
Branches Mounted on a Vertical
Wall
A theoretical analysis has been developed to predict the critical height and the location of
the onset of gas entrainment during discharge from a stratified two-phase region through
two oriented-side branches mounted on a vertical wall. In this analysis, a point sink
model was first developed, followed by a more accurate three-dimensional finite branch
model. The models are based on a new modified criterion for the onset of gas entrain-
ment. The theoretically predicted critical height and the location of the onset of gas
entrainment are found to be a function of the mass rate of each branch (Fr1 and Fr2), the
distance between the centerlines of the two branches �L /d�, and the inclination angle ���.
The effects of these variables on the predicted critical height and the onset location were
investigated. Furthermore, comparison between the theoretically predicted results and
the available experimental data was carried out to verify the developed models. The
comparison shows that the predicted results are very close to the measured data within a
deviation percentage of 12% at Fr1�10. This small deviation percentage reflects a good
agreement between the measured and predicted results. �DOI: 10.1115/1.2140804�

Keywords: onset of gas entrainment, dual discharges, side branches

1 Introduction
The importance of two-phase discharge from a stratified region,

due to its relevance to many industrial applications, has motivated
theoretical investigations for determining the onset of gas entrain-
ment using different configurations. Knowledge of the critical
height of the gas-liquid interface at onset under different operating
conditions is required because the type of discharging flow can
then be related to the height of the interface. This is a prerequisite
for being able to determine the mass flow rate and quality of the
discharging flow. For single discharge from a large channel con-
taining stratified two-phase flow, Zuber �1� came to the conclusion
that two individual phenomena may occur depending on the loca-
tion of the gas-liquid interface relative to the break. If the hori-
zontal gas-liquid interface is located above the break, the gas may
be entrained by a vortex or vortex-free flow through the break into
the predominantly liquid flow �onset of gas entrainment, OGE�
while, if the horizontal gas-liquid interface is located below the
break, the liquid may be entrained in the predominating gas flow
through the break �onset of liquid entrainment, OLE�. Detailed
experimental data and correlations were developed for the onset
of gas entrainment through a general oriented single branch �e.g.,
Smoglie and Reimann �2�, Yonomoto and Tasaka �3,4�, Micaelli
and Memponteil �5�, Hassan et al. �6�, and Hassan �7��. For the
theoretical study of the onset of gas entrainment from a stratified
two-phase region, Ahmed et al. �8� developed a new criterion for
the onset of gas entrainment based on the instability of an invicid
liquid surface accelerated vertically. Based on this criterion, two

different models were developed to predict the critical height at
the onset of gas entrainment. They indicated that the comparisons
between measured and predicted critical height show a very good
agreement. It is worth mentioning that Xue and Yue �9�, Miloh
and Tyvand �10�, Lubin and Springer �11�, Zhou and Grabel �12�,
and Zhou �13� investigated the flow due to side and bottom sub-
merged point sink. They concluded that the dip formation or the
onset of air at the free surface occurs at a specific value of a
dimensionless parameter, which is related to the sink strength, and
the height above the point sink.

For multiple discharges from a stratified two-phase region, Par-
rott et al. �14� and Parrott �15� experimentally investigated the
phenomenon of onset of gas entrainment from a stratified two-
phase region during dual discharge through vertically aligned
branches located on the sidewall of a reservoir. They indicated
that the critical height corresponding to the onset of gas entrain-
ment was found to be a function of the two discharge rates and
vertical distance between the centerlines of two branches. Hassan
et al. �16� experimentally investigated the onsets of gas and liquid
entrainment, mass flow rate, and quality during discharge from
two horizontal branches with centerlines falling in a common
horizontal plane. Maier �17� performed an experimental work on
the onset of gas and liquid entrainment during dual discharges
from a stratified two-phase region through two horizontal
branches with centerlines falling in a common plane with variable
inclinations in order to determine the critical height and location
for the onset. He indicated that four distinguishable modes of
entrainment were observed. These modes can be defined as initial
vortex entrainment, continuous vortex entrainment, initial depres-
sion entrainment, and continuous depression entrainment. For the
same configuration, Maier et al. �18,19� reported that the critical
height and the location of the onset of both phenomena were
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found to be dependent on the flow rates through the branches, the
distance between the branches, and the inclination angle.

For the theoretical prediction of the critical height at the onset
of gas entrainment from a stratified region through dual branches,
Ahmed et al. �20� developed theoretical models using the criterion
developed by �8� to investigate the onset of gas entrainment
through two vertically aligned side branches. They stated that the
theoretically predicted critical height at the onset of gas entrain-
ment was found to be in a good agreement with experimental data.

The objective of the present investigation is to extend the pre-
vious study �20� by developing an analysis to predict the onset of
gas entrainment during discharge from two branches with center-
lines falling in an inclined plane. In the current analysis, two
models have been developed: a simplified point-sink model and a
more-accurate three-dimensional finite-branch model. These mod-
els are based on a new modified criterion for the onset of gas
entrainment. Moreover, comparisons with measured data are pro-
vided to validate the developed models.

2 Theoretical Analysis
The configuration to be considered, shown in Fig. 1, is com-

posed of stratified layers of two immiscible fluids, having densi-
ties �1 and �2, contained in a large reservoir with two branches
mounted on a vertical wall. The plane passing through the branch
centerlines is inclined with an angle � and it rotates clockwise
from the positive x axis. The distance between branch centerlines
is L. The mass flow rates of upper and lower branches are ṁ1 and
ṁ2, respectively. The analysis presented in this article is based on
the following assumptions:

1. The two fluids are considered to be invicid, homogenous,
and incompressible.

2. The flow of the higher density fluid is considered to be irro-
tational, vortex free, and quasi-steady. Therefore, the tran-
sient free surface flow is not considered in this study.

3. The lower density fluid is considered stagnant.
4. Surface tension effect is ignored.
5. The flow field is extending over −��x��, 0�z��.
6. The change in the surface elevation is considered to be very

small, which can be acceptably neglected.

2.1 Equilibrium of the Interface. In order to find an analyti-
cal expression of the velocity at point �A�, applying the Bernoulli
equation on a streamline coincident with the interface from the
heavier fluid side between point A and point C of Fig. 1, we get

PC + 1
2�1VC

2 + �1gH = pA + 1
2�1VA

2 + �1ghA �1�

On the side of the stagnant lighter fluid, the hydrostatic equilib-
rium gives

pC + �2gH = pA + �2ghA �2�

When H=HOGE, VC=0.0, the velocity of the liquid at point A can
be given as

VA
2 = 2g

��

�1
�HOGE − hA� �3�

Again applying the Bernoulli equation on a streamline coincident
with the interface from the heavier fluid side between points B
and C of Fig. 1, then following the same procedure, the velocity
of the liquid at point B may be given as

VB
2 = 2g

��

�1
�HOGE − �hB + L sin ��� �4�

2.2 The Modified Criterion of the Onset of Gas
Entrainment. As indicated by Ahmed et al. �8,20�, the criterion
used to predict the onset of gas entrainment is based on the equal-
ity between the acceleration of the higher density fluid directly
above the branch and the acceleration of gravity. Any further in-
crease of liquid acceleration above the acceleration of gravity will
cause flow instability. This instability results in a catastrophic
change in the free surface shape. This criterion is based on the
assumption that the density of lighter fluid is very small compared
to the density of heavier fluid so, acceptably, it may be neglected.
However, when the density of the lighter fluid is comparable with
the density of the heavier fluid, this significant density difference
�� reduces the gravitational effect. Then, we can neglect the
lighter density fluid, and the interface is considered as a free sur-
face under the action of reduced gravity of g�=g��� /�1�. Conse-
quently, the modified criterion for the onset of gas entrainment
will be written as follows:

�a�A = − g� = − g���

�1
� . �5�

At a very small value of density of the lighter fluid, ����1 and
g�=g.

2.3 Point-Sink Analysis. In the present analysis, the two
branches are simulated as two point sinks with corresponding
strengths m1 and m2. Relating the sink strengths m1 and m2 to the
mass flow rates ṁ1 and ṁ2 gives the following:

ṁ1 = 2��1m1 ṁ2 = 2��1m2 �6�

Regarding the upper branch, the velocity field of the heavier fluid
can be developed by following Schetz and Fuhs �21�. The poten-
tial function � is given by

Fig. 1 Geometry and coordinate system for finite-branch analysis
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� = �1 + �2 =
m1

�x2 + y2 + z2
+

m2

��x − L cos ��2 + �y − L sin ��2 + z2

�7�

The criterion used for the prediction of the critical height at the
onset of gas entrainment is defined previously in Eq. �5� as �a�A

=−g��� /�1�.
The acceleration of the fluid particle at point A can be written as

�a�A =
�Vy

�t
+ Vx

�Vy

�x
+ Vy

�Vy

�y
+ Vz

�Vy

�z
�8a�

where

�Vy

�t
= 0.0 �quasi-steady assumption�

VZ = 0.0 �no flow crossing the wall at point A�

Then, the final form of the acceleration of fluid particle at point A
can be written in terms of potential function � as

�a�A = 	� ��

�y
�� �2�

�y2 � + � ��

�x
�� �2�

�x�y
�


A�x=z=0.0,y=hA�
�8b�

Although the whole terms of acceleration shown by equation �8b�
are included in the point-sink and finite branch analysis, it is
worth noting that, based on the calculations of critical height at
the onset of gas entrainment, the effect of the last term ��� /�x�
	��2� /�x�y� within the studied range of variables is found not to
exceed 0.2%. Consequently, it is reasonable to assume that the
value of ��� /�x� approaches zero at the onset. By getting the first
and second derivatives of Eq. �7�, and then applying in Eq. �8b�,
the relationship in dimensionless form between the height above
the branch hA

* , Fr1, Fr2, L*, and � can be defined as follows:

Fr1
2

hA
*5 −

Fr1Fr2

2.0
� 1.0

hA
*2��L* cos ��2 + �hA

* − L* sin ��2�3/2

−
3�hA

* − L* sin ��2

hA
*2��L* cos ��2 + �hA

* − L* sin ��2�5/2

−
2�hA

* − L* sin ��
hA

*3��L* cos ��2 + �hA
* − L* sin ��2�3/2�

−
Fr2

2

2.0
� �hA

* − L* sin ��
��L* cos ��2 + �hA

* − L* sin ��2�3

−
�L* cos ��2�hA

* − L* sin ��
��L* cos ��2 + �hA

* − L* sin ��2�4

−
3�hA

* − L* sin ��3

��L* cos ��2 + �hA
* − L* sin ��2�4� − 1.0 = 0.0 �9�

By substituting in Eq. �3�, the dimensionless critical height
HOGE /d corresponding to the onset of gas entrainment at point A
can be determined as follows:

�HOGE

d
�

A

=
hA

*

2
+

1

8	�Fr1

hA
*2

+ � Fr2�hA
* − L* sin ��

��L* cos ��2 + �hA
* − L* sin ��2�3/2�2

+ � Fr2L* cos �

��L* cos ��2 + �hA
* − L* sin ��2�3/2�2
 . �10�

For any specific value of Fr1, Fr2, L /d, and �, the height above the
branch hA

* can be estimated by solving Eq. �9� using an iterative
procedure. Consequently, the critical height corresponding to the
onset of gas entrainment at point A, �HOGE /d�A, can be deter-

mined from Eq. �10�.
Regarding the lower branch, the critical height at the onset of

gas entrainment can be developed using the same procedure as for
the upper branch. The final relationship between the height above
the branch hB

* , Fr1, Fr2, L*, and � can be analytically expressed as
follows:

Fr2
2

hB
*2 −

Fr1Fr2

2.0
� 1.0

hB
*2��L* cos ��2 + �hB

* + L* sin ��2�3/2

−
3�hB

* + L* sin ��2

hB
*2��L* cos ��2 + �hB

* + L* sin ��2�5/2

−
2�hB

* + L* sin ��
hB

*3��L* cos ��2 + �hB
* + L* sin ��2�3/2�

−
Fr1

2

2.0
� �hB

* + L* sin ��
��L* cos ��2 + �hB

* + L* sin ��2�3

−
�L* cos ��2�hB

* + L* sin ��
��L* cos ��2 + �hB

* + L* sin ��2�4

−
3�hB

* + L* sin ��3

��L* cos ��2 + �hB
* + L* sin ��2�4� − 1.0 = 0.0 �11�

The dimensionless critical height HOGE /d at the onset of gas en-
trainment at point B can be expressed as follows:

�HOGE

d
�

B

= �hB
* + L* sin �

2
� +

1

8	�Fr2

hB
*2

+ � Fr1�hB
* + L* sin ��

��L* cos ��2 + �hB
* + L* sin ��2�3/2�2

+ � Fr1L* cos �

��L* cos ��2 + �hB
* + L* sin ��2�3/2�2
 �12�

Again, by knowing Fr1, Fr2, L /d, and �, the height above the
branch hB

* can be calculated by solving Eq. �11� using an iterative
procedure. Based on the value of hB

* , the critical height corre-
sponding to the onset of gas entrainment at point B, �HOGE /d�B,
can be determined from Eq. �12�.

Based on the calculated values of �HOGE /d�A and �HOGE /d�B,
two objectives are considered. The first one is to locate the sink or
sinks where the onset of gas entrainment would occur and the
critical height corresponding to this onset. For a specific value of
Fr1, Fr2, L /d, and �, the critical height corresponding to the onset
of gas entrainment for both branches can be calculated. Then, if
�HOGE /d�A� �HOGE /d�B, it means that the onset of gas entrain-

ment occurs at branch 1, and the critical height will be HOGE /d
= �HOGE /d�A. If �HOGE /d�B� �HOGE /d�A, this means that the onset
of gas entrainment occurs at branch 2 and the critical height will
be HOGE /d= �HOGE /d�B, and, if �HOGE /d�A= �HOGE /d�B, in this
case the onset of gas entrainment occurs at both branches at the
same time—a situation which is called a dual onset and the criti-
cal height will be HOGE /d= �HOGE /d�A= �HOGE /d�B. Furthermore,
if Fr2=0.0 or Fr1=0.0, the value of HOGE /d is the same as for the
case of a single branch.

It is clear based on Eqs. �9�–�12� that for limiting case Fr1
=Fr2=0.0, the critical height corresponding to the onset of gas
entrainment approaches zero. However, the correct limit should be
d /2. This means that the results of point sink analysis are not
accurate for low discharges. A more accurate analysis, therefore,
is presented in the following section in which all previously men-
tioned assumptions will be considered, except for considering the
branch size.

2.4 Finite-Branch Analysis. In this analysis, the real dimen-
sions of the branches are considered. The flow is caused by the
two discharges with uniform velocity Vd1 from branch 1, located
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at x=y=z=0.0, and the velocity Vd2 from branch 2, located at x
=L cos �, y=L sin �, and z=0.0 as shown in Fig. 1. The continuity
equation using the Cartesian coordinate system can be written in
dimensionless form as follows:

�Vx
*

�x* +
�Vy

*

�y* +
�Vz

*

�z* = 0.0 �13�

where Vx
*, Vy

*, and Vz
* are the dimensionless velocity components

in x*, y*, and z* directions. Introducing a dimensionless scalar
potential function �* such that

Vx
* =

��*

�x* Vy
* =

��*

�y* and Vz
* =

��*

�z* �14�

Then, Eq. �13� can be written as follows:

�2�*

�x*2 +
�2�*

�y*2 +
�2�*

�z*2 = 0.0 �15�

with the following boundary conditions:
�a� At z*=0.0,

��*

�z* = �− Vd1

*
− �1 − y*2 � x* � + �1 − y*2, and − 1 � y* � + 1

− Vd2
* L* cos � − �1 − �y* − L* sin ��2 � x* � L* cos � + �1 − �y* − L* sin ��2, and L* sin � − 1 � y* � L* sin � + 1

0.0 for other values of x* and y*
�

�b� At x*→ ±�, z*→ +�, �* is finite.
As indicated in �b�, one more assumption is considered in order to get an analytical solution of Eq. �15� which is that the lighter

density fluid is ignored; consequently, the higher density fluid is unbounded �i.e., y= ±��. Craya �22� indicated that assuming the liquid
is unbounded in the upwards and downwards directions does not markedly alter the results as long as the top and bottom surfaces are
located sufficiently far from the interface. Furthermore, an assessment of the influence of this assumption was proved by many
researchers �e.g., Soliman and Sims �23,24�, Maier et al. �18�, and Ahmed et al. �8,20��. The solution of Eq. �15� subjected to the
boundary conditions given by �a� and �b� was obtained using the method of separation of variables as follows:

�*�x*,y*,z*� =�
0

��
0

�
cos�
y*�cos��x*�e−z*��2+
2

���2 + 
2 �2Vd1

*

�2 �
−1

+1

sin���1 − y*2�cos�
y*�dy* +
Vd2

*

�2 �
L* sin �−1

L* sin �+1

sin���L* cos �

+ �1 − �y* − L* sin ��2��cos�
y*�dy* −
Vd2

*

�2 �
L* sin �−1

L* sin �+1

sin���L* cos � − �1 − �y* − L* sin ��2��cos�
y*�dy*�d�d


+�
0

��
0

�
cos�
y*�sin��x*�e−z*��2+
2

���2 + 
2 �Vd2

*

�2 �
L* sin �−1

L* sin �+1

cos���L* cos � − �1 − �y* − L* sin ��2��cos�
y*�dy*

−
Vd2

*

�2 �
L* sin �−1

L* sin �+1

cos���L* cos � + �1 − �y* − L* sin ��2��cos�
y*�dy*�d�d


+�
0

��
0

�
sin�
y*�cos��x*�e−z*��2+
2

���2 + 
2 �2Vd1

*

�2 �
−1

+1

sin���1 − y*2�sin�
y*�dy* +
Vd2

*

�2 �
L* sin �−1

L* sin �+1

sin���L* cos �

+ �1 − �y* − L* sin ��2��sin�
y*�dy* −
Vd2

*

�2 �
L* sin �−1

L* sin �+1

sin���L* cos � − �1 − �y* − L* sin ����sin�
y*�dy*�d�d


+�
0

��
0

�
sin�
y*�sin��x*�e−z*��2+
2

���2 + 
2 �Vd2

*

�2 �
L* sin �−1

L* sin �+1

cos���L* cos � − �1 − �y* − L* sin ��2��sin�
y*�dy*

−
Vd2

*

�2 �
L* sin �−1

L* sin �+1

cos���L* cos � + �1 − �y* − L* sin ��2��sin�
y*�dy*�d�d
 �16�

As indicated before, the criterion for the onset of gas entrainment
can be written as

�a*�A = − g*���

�1
� �17�

where

�a*�A = 	� ��*

�y* �� �2�*

�y*2 � + � ��*

�x* �� �2�*

�x*�y*�

A�x*=z*=0.0,y*=hA

* �

�18�

The values of the first and second derivatives of the stream func-
tions �* at point A can be written as follows:

��y*
* �A =

Vd1
*

�2 �I1�hA
*�� +

Vd2
*

�2 �I2�hA
*�� �19�
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��y*y*
* �A =

Vd1
*

�2 �I3�hA
*�� +

Vd2
*

�2 �I4�hA
*�� �20�

��x*
* �A =

Vd2
*

�2 �I5�hA
*�� �21�

��x*y*
* �A =

Vd2
*

�2 �I6�hA
*�� �22�

where

I1�hA
*� =�

0

��
0

��
−1

+1
2


���2 + 
2
�sin�
�y* − hA

*��

	�sin���1 − y*2���dy*d
d�

I2�hA
*� =�

0

��
0

��
L* sin �−1

L* sin �+1 − 
 sin�
�y* − hA
*��

���2 + 
2
„sin���L* cos �

− �1 − �y* − L* sin ��2�� − sin���L* cos �

+ �1 − �y* − L* sin ��2��…dy*d
d�

I3�hA
*� =�

0

��
0

��
−1

+1
2
2

���2 + 
2
�cos�
�y* − hA

*��

	sin���1 − y*2��dy*d
d�

I4�hA
*� =�

0

��
0

��
L* sin �−1

L* sin �+1 − 
2 cos�
�y* − hA
*��

���2 + 
2
„sin���L* cos �

− �1 − �y* − L* sin ��2�� + sin���L* cos �

+ �1 − �y* − L* sin ��2��…dy*d
d�

I5�hA
*� =�

0

��
0

��
L* sin �−1

L* sin �+1 cos�
�y* − hA
*��

��2 + 
2
„cos���L* cos �

− �1 − �y* − L* sin ��2�� − cos���L* cos �

+ �1 − �y* − L* sin ��2��…dy*d
d�

I6�hA
*� =�

0

��
0

��
L* sin �−1

L* sin �+1 − 
 sin�
�y* − hA
*��

��2 + 
2
„cos���L* cos �

− �1 − �y* − L* sin ��2�� − cos���L* cos �

+ �1 − �y* − L* sin ��2��…dy*d
d�

Substituting Eqs. �19�–�22� into Eq. �18� will give

Fr1
2�I1�hA

*�I3�hA
*�� + Fr1Fr2�I2�hA

*�I3�hA
*� + I1�hA

*�I4�hA
*��

+ Fr2
2�I2�hA

*�I4�hA
*� + I5�hA

*�I6�hA
*�� + �4 = 0.0 �23�

By substituting in Eq. �3�, the critical height corresponding to the
onset of gas entrainment may be written as

�HOGE

d
�

A

=
hA

*

2
+

1

2�4„�Fr1�I1�hA
*�� + Fr2�I2�hA

*���2

+ �Fr2�I5�hA
*���2

… �24�

The procedures to calculate the critical height corresponding to
the onset of gas entrainment of branch A, for specific values of
independent variables Fr1, Fr2, L /d, and �, can be summarized as
follows.

1. Calculate the integral functions I1, I2, I3, I4, I5, and I6 using
the proper numerical integration technique as indicated by
�25�.

2. Solve Eq. �23� using an iterative procedure to obtain the
value of hA

* .
3. Determine the critical height at the onset of gas entrainment

using Eq. �24�.

Regarding branch 2, the critical height for the onset of entrain-
ment can be obtained by following the same technique as for
branch 1. The final analytical equation can be expressed in the
following form:

Fr2
2�J1�hB

*�J3�hB
*�� + Fr1Fr2�J2�hB

*�J3�hB
*� + J1�hB

*�J4�hB
*��

+ Fr1
2�J2�hB

*�J4�hB
*� + J5�hB

*�J6�hB
*�� + �4 = 0.0 �25�

The critical height corresponding to the onset of gas entrainment
can be written as

�HOGE

d
�

B

= �hB
* + L* sin �

2
� +

1

2�4„�Fr2�J1�hB
*�� + Fr1�J2�hB

*���2

+ �Fr1�J5�hB
*���2

… �26�

where

J1�hB
*� =�

0

��
0

��
−1

+1
− 2


���2 + 
2
�sin�
�y1

* − hB
*��

	�sin���1 − y1
*2���dy1

*d
d�

J2�hB
*� =�

0

��
0

��
−L* sin �−1

−L* sin �+1 − 
 sin�
�y1
* − hB

*��

���2 + 
2
„sin���− L* cos �

− �1 − �y1
* + L* sin ��2�� − sin���− L* cos �

+ �1 − �y1
* + L* sin ��2��…dy1

*d
d�

J3�hB
*� =�

0

��
0

��
−1

+1
2
2

���2 + 
2
�cos�
�y1

* − hB
*��

	sin���1 − y�*2��dy1
*d
d�

J4�hB
*� =�

0

��
0

��
−L* sin �−1

−L* sin �+1 − 
2 cos�
�y1
* − hB

*��

���2 + 
2

	„sin���− L* cos � − �1 − �y1
* + L* sin ��2��

+ sin���− L* cos � + �1 − �y1
* + L* sin ��2��…dy1

*d
d�

J5�hB
*� =�

0

��
0

��
−L* sin �−1

−L* sin �+1 cos�
�y1
* − hB

*��
��2 + 
2

„cos���− L* cos �

− �1 − �y1
* + L* sin ��2�� − cos���− L* cos �

+ �1 − �y1
* + L* sin ��2��…dy1

*d
d�

J6�hB
*� =�

0

��
0

��
−L* sin �−1

−L* sin �+1 − 
 sin�
�y1
* − hB

*��
��2 + 
2

„cos���− L* cos �

− �1 − �y1
* + L* sin ��2�� − cos���− L* cos �

+ �1 − �y1
* + L* sin ��2��…dy1

*d
d�

Similar to the previous procedures for the upper branch, the criti-
cal height corresponding to the onset of gas entrainment of the
lower branch can be summarized as follows.

1. Calculate the integral functions J1, J2, J3, J4, J5, and J6 using
the proper numerical integration technique.

2. Solve Eq. �25� using an iterative procedure to obtain the
value of hB

* .
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3. Determine the critical height at the onset of gas entrainment
using Eq. �26�.

The conclusion is that for a specific value of Fr1, Fr2, L /d, and
�, the critical height at the onset of gas entrainment is calculated
for both branches and HOGE /d is selected as the largest one as
previously explained. Also, if �HOGE /d�A= �HOGE /d�B, it means
that the onset of gas entrainment occurs at both branches at the
same time—a situation which is called a dual onset and the criti-
cal height will be HOGE /d= �HOGE /d�A= �HOGE /d�B.

3 Results and Discussion
In this section, the theoretically predicted critical height at the

onset of gas entrainment and the location of the onset by point-
sink and finite-branch models were investigated at different values
of mass flow rate of upper branch �Fr1�, lower branch �Fr2�, dis-
tance between the centerlines of two branches �L /d�, and the in-
clination angle ��� where it rotates clockwise from the positive x
axis. The objective of this investigation is to clarify how these
independent variables �Fr1, Fr2, L /d, and �� control the values of
critical height as well as the onset location. In addition, compari-
sons between the theoretically predicted results by both models
and the experimental data were performed to provide a validation
for the present developed models. The sets of experimental results
selected for this comparison were measured by Parrott et al. �14�
and Maier et al. �19� at continuous depression entrainment mode
during dual horizontal discharge from two 6.35 mm diameter
branches with centerlines in an inclined plane located on the side
of a large reservoir under a stratified �air-water� condition and air
pressure of 510 kPa. Also, the direction of rotation of angle �
shown in Fig. 1 is the same as the direction shown in the experi-
mental setup used for measurements by Maier et al. �19�.

For dual branches, Fig. 2 shows the comparison of the present
predicted results using both models with the experimental data by
Maier et al. �19� at L /d=1.5, and varying the mass flow rate of
lower branch �Fr2=14, 28.5, and 42.5�, while � is set to 0.0, 30.0,
and 60 deg. As shown in Fig. 2�a�, where � is set to 0.0 deg, the
present models predict well the critical height at the onset of gas
entrainment �HOGE /d� and the location of the dual onset point.
However, in Fig. 2�b�, where �=30.0 deg, the models slightly
overpredicted the dual onset point at Fr2=42.5. In Fig. 2�c�, where
�=60.0 deg, the present models accurately predict the critical
height at the onset of gas entrainment �HOGE /d� and the location
of the dual onset point.

Comparing Figs. 2�a�–2�c� indicates that by increasing the
angle �, the dual onset point shifts towards the lower Fr1. It means
that the value of Fr1 at the dual onset point decreases by increas-
ing the inclination angle �.

Figure 3 illustrates the comparison of the predicted critical
height and the location of the onset with the measured values by
Maier et al. �19� at L /d=2, and Fr2 varies �14.0, 28.5, and 42.5�
when � is set to 0.0 deg as in Fig. 3�a�, � is set to 30.0 deg as in
Fig. 3�b�, and � is set to 60.0 deg as in Fig. 3�c�. It is obvious
from Fig. 3�a� that both models accurately predict the measured
values of �HOGE /d� and the location of dual onset point, whereas
in Fig. 3�b� the models slightly overpredicted the dual onset
points. Increasing the inclination angle � up to 60.0 deg results in
the onset of gas entrainment at the upper branch, while there is no
onset of gas entrainment at the lower branch. Comparison be-
tween Figs. 3�a� and 3�b� shows that with increasing the angle �,
the value of Fr1 corresponding to the location of dual onset point
decreases.

In a similar way, comparison of the predicted HOGE /d and the
location of the onset point with that measured by Maier et al. �19�
at L /d=8.0, while Fr2 varies �Fr2=14.0, 28.5, and 56.6� at two
different values of � �0.0 and 30.0 deg�, is shown in Fig. 4. As
shown in Fig. 4�a�, where �=0.0 deg, the theoretical models pre-
dict well the experimental values of HOGE /d and the location of

the dual onset point. However, in Fig. 4�b�, where �=30.0 deg,
the experimental data were slightly overpredicted by both models
at Fr1�10.0, while for Fr1�10.0 the model predicted well the
measured values. Also, the values of the critical height are inde-
pendent of Fr2 within the measured range 0.0–42.5 and the value

Fig. 2 Comparisons between predicted and experimental re-
sults at different values of � „0.0, 30, and 60 deg… for L /d=1.5
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of critical height at the onset is the same as a single branch.
Comparison between Figs. 4�a� and 4�b� indicates that increasing
the inclination angle up to 30.0 deg results in the onset of gas
entrainment at the upper branch only while there is no onset of gas
entrainment at the lower branch.

The effect of Fr2 on the critical height �HOGE /d� and onset
location can be observed from Figs. 2–4. It is clear based on these
figures that by increasing Fr2, the critical height at the onset of gas
entrainment increases. For a fixed value of Fr1, the onset of gas
entrainment occurs at branch 2 for low values of Fr1. There is a
slight increase of critical height as Fr1 increases up to the point
where the onset of gas entrainment occurs at both branches—a
situation which is called a dual onset point. Beyond this point, the
onset shifts to branch 1 and the critical height increases signifi-
cantly with Fr1. Also, the value of Fr1 at the point of dual onset
increases as Fr2 increases.

Figure 5 elucidates the comparison between the theoretically
predicted results and the experimental data measured by Maier et
al. �19� at �=0.0, 30, and 60.0 deg, and by Parrott et al. �14� at
�=90.0 deg. Parrott et al. collected two different sets of experi-
mental data for the critical height at the onset of gas entrainment,
HOGE,f and HOGE,m. The first set of experiments �HOGE,f� is de-
fined as the height between the flat surface at the interface and the
branch centerline, at the onset of gas entrainment, while the sec-
ond set �HOGE,m� is defined as HOGE,m=HOGE,f +the meniscus
height of 3.3 mm. As indicated by Parrott �15� for low liquid level
heights associated with low discharge rates, HOGE,m appeared to
be more meaningful to the phenomenon than HOGE,f, while for
high discharge rates, the difference between HOGE,f /d and

Fig. 3 Comparisons between predicted and experimental re-
sults at different values of � „0.0, 30, and 60 deg… for L /d=2.0

Fig. 4 Comparisons between predicted and experimental re-
sults at different values of � „0.0 and 30 deg… for L /d=8.0
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HOGE,m /d appeared to be relatively small. As shown in Fig. 5�a�,
where L /d is set to 1.5, the models overpredicted the dual onset
points at �30.0 deg, while at �=90.0 deg the models were
found to be consistent with the average value of HOGE,f /d and
HOGE,m /d. In Fig. 5�b�, where L /d=2.0, similar results are ob-
served. Comparison between Figs. 5�a� and 5�b� shows that in-
creasing L /d leads to the decrease of the critical height at values
of �30.0 deg and the value of Fr1 at dual onset point.

The effect of the inclination angle � on HOGE /d and location of
the onset is observed from Fig. 5 for different values of L /d, with
a constant Fr2=56.6. These results show that HOGE /d decreases as
� increases for the same value of Fr1, Fr2, and L /d. At �
=90.0 deg, and L /d=2.0, the onset takes place at branch 1 at the
values of Fr1�0.5 as shown in Fig. 5�b�. Moreover, the value of
Fr1 corresponding to the dual onset point decreases as � increases.

The conclusion based on Figs. 2–6 is that the critical height at
the onset of gas entrainment increases by increasing Fr1, or Fr2,
whereas increasing the inclination angle � and/or the distance be-
tween branches �L /d� decreases the critical height at the onset.
This may be explained by the effect of inertia due to the discharge
of each branch. Increasing Fr1 or Fr2 results in the increase of the
inertia effect and, consequently, the critical height at the onset,
whereas increasing the inclination angle and/or the distance be-
tween branch centerlines causes the increase of the height be-
tween the interface and the lower branch. This will reduce the

inertia effect and hence the influence of the lower branch. Further
increase of L /d results in a single branch approximation.

The comparisons between the predicted and experimental re-
sults of the critical height are shown in Figs. 6–9. These figures
show the percent deviation of the experimental data from the finite
branch prediction which is defined as HOGE /HOGE,FBA. At L /d
=1.5 and 2.0, the effect of the inclination angle ranging from
0.0 to 60 deg on the percent deviation is presented in Figs. 6 and
7. Based on the figures, it is obvious that at Fr1�3.0, the percent
deviation of measurements is around 15%, while at Fr1�3.0 the
percent deviation reaches 38%. At L /d=8.0, the effect of the in-
clination angle ranging from 0.0 to 30.0 deg on the percent devia-
tion is shown in Fig. 8. When �=0.0, the percent deviation is
about 10% at all values of Fr1, and when �=30.0 deg, the percent

Fig. 5 Comparisons between predicted and experimental re-
sults at different values of L /d „1.5 and 2… for Fr2=56.6

Fig. 6 Percent deviation from the predicted critical height by
finite branch model using the experimental data of Maier et al.
†19‡ at L /d=1.5 and �=0, 30, and 60 deg

Fig. 7 Percent deviation from the predicted critical height by
finite branch model using the experimental data of Maier et al.
†19‡ at L /d=2.0 and �=0, 30, and 60 deg
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deviation is about 10% at Fr1�10, and about 38% at Fr1�10.
Figure 9 represents the percent deviation at Fr2=56.6 and L /d
=1.5 and 2.0 while � varies from 0.0 to 90 deg. It is found that
the percent deviation is about ±12% in case of Fr1�10 and about
25% at Fr1�10.

The conclusion based on Figs. 6–9 is that for Fr1�10, the
maximum deviation varied from 6.0% to about 12%, whereas at
low Froude number �Fr1�10�, the maximum deviation varied
from 12% to about 38%. The reason is most likely due to the
viscous effect where it is expected to have a significant influence
on the predicted critical height at low values of Fr1. However, at
higher values of Fr1 �Fr1�10� the inertia effect is dominant and
the viscous effect may be insignificant.

Increasing L /d and � or decreasing Fr2 will increase the devia-
tions between predicted and measured critical height at Fr1�10,
whereas at Fr1�10 there is no effect of these variables on the
deviations. This may be attributed to the viscous effect where
increasing L /d and/or � reduces the effect of Fr2 and consequently
the influence of the lower branch. This will result in a single
branch approximation and consequently will increase the viscous
effect at lower values of Fr1 �Fr1�10�. Therefore, considering the
viscous effect in the model would probably reduce the deviations
between measured and predicted values of critical height espe-
cially at low values of Froude number �Fr1�10�.

The effect of L /d on HOGE /d and location of the dual onset
using the finite branch model is shown in Fig. 10 for Fr2=60.0,
and �=30.0 deg. It is clear from the figure that increasing L /d
decreases the HOGE /d and the value of Fr1 at the dual onset point.
For L /d=8.0 a single branch is closely approximated and the
onset of gas entrainment takes place only at the upper branch.

The effect of Fr1 on the behavior of the critical height and the
location of dual onset point using the finite branch model is pre-
sented in Fig. 11. It shows the variation of HOGE /d against � for
various values of Fr1 with Fr2=60 and L /d=2.0. Based on the

Fig. 8 Percent deviation from the predicted critical height by
finite branch model using the experimental data of Maier et al.
†19‡ at L /d=8.0 and �=0 and 30 deg

Fig. 9 Percent deviation from the predicted critical height by
finite branch model using the experimental data of Maier et al.
†19‡ and Parrott et al. †14‡ at Fr2=56.6 and L /d=1.5 and 2.0

Fig. 10 Influence of L /d on HOGE /d and dual onset point for
Fr2=60

Fig. 11 Influence of Fr1 on HOGE /d and dual onset point for
L /d=2.0
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figure, it is clear that for Fr1�Fr2 the onset of gas entrainment
occurs at the upper branch and HOGE /d slightly decreases with �.
For Fr1=Fr2, the onset of gas entrainment occurs at both branches
�dual onset point� for �=0.0. In the case of Fr1�Fr2, the onset of
gas entrainment occurs first at branch 2 up to a certain value of �
where the dual onset point occurs, beyond which entrainment
shifts to branch 1. In addition, decreasing Fr1 increases the value
of � at the dual onset point and, for Fr1=0.0, the onset of gas
entrainment occurs at the lower branch for all values of �.

The behavior of the dual onset where HOGE /d= �HOGE /d�A
= �HOGE /d�B, as a function of Fr1 and Fr2 at different values of �,
is presented in Fig. 12�a� for L /d=2 and in Fig. 12�b� for L /d
=4.0. It is clear based on Fig. 12�a� that, for �=0.0, the dual onset
occurs at Fr1=Fr2. If Fr1�Fr2, the onset occurs only at branch 1,
whereas in the case of Fr1�Fr2 the onset occurs only at branch 2.
Furthermore, increasing the inclination angle � results in an in-
crease of the value of Fr2 required for dual onset to occur. It
means that at a constant value of Fr1, the greater the angle �, the
higher the value of Fr2 required for the dual onset to occur. By

increasing L /d to 4, as shown in Fig. 12�b�, a similar trend was
obtained. Comparing Fig. 12�a� for L /d=2.0, with Fig. 12�b� for
L /d=4, it was found that at �=0.0, the location of the dual onset
occurs at Fr1=Fr2 and is independent of L /d. This is referred to
as, at �=0.0 deg, both branches having the same height from the
interface and each branch behaving as an independent single one.
Therefore, the critical height for each branch is independent of the
separation distance between the two branches, whereas, for �
�0.0, increasing the distance between branches L /d leads to an
increase of the value of Fr2 for dual onset to occur. Because of an
increase in the inclination angle �, the height above branch 2
increases. Consequently, the value of Fr2 required for the onset to
occur increases. The same effect was found due to the increase of
the distance between two branches L /d.

4 Conclusion
A theoretical analysis has been developed to predict the critical

height and the location of the onset of gas entrainment during
discharge from a stratified two-phase region through two oriented-
side branches mounted on a vertical wall. In this analysis, a point
sink model was first developed, followed by a more accurate
three-dimensional finite branch model. The models are based on a
new modified criterion for the onset of gas entrainment. The pre-
dicted critical height and the location of the onset of gas entrain-
ment were found to be in a good agreement with the available
experimental data at different values of Fr1, Fr2, L /d, and �. The
percentage of deviation of the experimental data from the finite
branch prediction is about 12% at Fr1�10.

Based on these models, it was found that increasing Fr1 or/and
Fr2 increases the critical height at the onset of gas entrainment,
whereas increasing the inclination angle � and the distance be-
tween branch centerlines �L /d� decreases the critical height. Fur-
thermore, at �=0.0 deg, the dual onset takes place at Fr1=Fr2 and
is independent of L /d. At ��0.0°, the dual onset occurs at Fr2
�Fr1 and is dependent on L /d. Increasing the inclination angle �
or the distance between branches L /d results in the increase of Fr2
required for the dual onset to occur.

Nomenclature
a � acceleration

a* � dimensionless acceleration
d � branch diameter, m

Fr1 � Froude number of the upper branch,
�4/��ṁ1 /�32gro

5�1��
Fr2 � Froude number of the lower branch,

�4/��ṁ2 /�32gro
5�1��

g � gravitational acceleration, m/s2

g* � dimensionless gravitational acceleration,
gro /Vd1

2 +Vd2

2

HOGE � critical height corresponding to the onset of
gas entrainment, m

H � distance between the upper branch centerline
and point C as defined in Fig. 1, m

hA � distance between the upper branch centerline
and the point A as defined in Fig. 1, m

hB � distance between the lower branch centerline
and the point B as defined in Fig. 1, m

hA
* ,hB

*
� dimensionless distance, hA

* =hA /ro, hB
* =hB /ro

L � distance between the centerlines of the two
branches, m

L* � dimensionless distance between the centerlines
of the two branches, L /ro

m1 � strength of the upper point-sink, m3/s
m2 � strength of the lower point-sink, m3/s
ṁ1 � mass flow rate of the upper branch, kg/s
ṁ2 � mass flow rate of the lower branch, kg/s

Fig. 12 Prediction of the dual onset at different vales of L /d „2
and 4…
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PA � static pressure of the interface at point A,
N/m2

PB � static pressure of the interface at point B,
N/m2

PC � static pressure of the interface at point C,
N/m2

x ,y ,z � cartesian coordinate system O, as defined in
Fig. 1

x* ,y* ,z* � dimensionless variables, �x /ro ,y /ro ,z /ro�
x1 ,y1 ,z1 � auxiliary set of Cartesian coordinate system

O1, as defined in Fig. 1
x1

* ,y1
* ,z1

* � dimensionless variables, �x1 /ro ,y1 /ro ,z1 /ro�
ro � branch radius, m

Vx ,Vy ,Vz � velocity components in x, y, and z directions,
m/s

Vx
* ,Vy

* ,Vz
* � dimensionless velocity components in x*, y*,

and z* directions,
Vx /�Vd1

2 +Vd2

2 ,Vy /�Vd1

2 +Vd2

2 ,Vz /�Vd1

2 +Vd2

2

VA � velocity of fluid at point A, as defined in Fig.
1

VB � velocity of fluid at point B, as defined in Fig.
1

VC � Velocity of fluid at point C, as defined in Fig.
1

Vd1 � discharge velocity of the upper branch, m/s
Vd2 � discharge velocity of the lower branch, m/s
Vd1

*
� dimensionless discharge velocity of the upper

branch, Vd1
/�Vd1

2 +Vd2

2

Vd2

*
� dimensionless discharge velocity of the lower

branch, Vd2
/�Vd1

2 +Vd2

2

I1, I2, I3, I4,
I5, and I6 � integral functions related to the onset of upper

branch
J1, J2, J3, J4,

J5, and J6 � integral functions related to the onset of lower
branch

Greek Letters
�� � density difference between two fluids, ��1−�2�,

kg/m3

�1 � density of heavier fluid, kg/m3

�2 � density of lighter fluid, kg/m3

� ,
 � constants
� � inclination angle rotates clockwise from the

positive x axis.
� ,�1 ,�2 � potential functions, m2/s

�* � dimensionless potential function
�y*

*
� first derivative of the dimensionless potential

function with respect to y*

�y*y*
*

� second derivative of the dimensionless poten-
tial function with respect to y*

�x*
*

� first derivative of the dimensionless potential
function with respect to x*

�x*y*
*

� second derivative of the dimensionless poten-
tial function with respect to x* and y*
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A Thermal Lattice Boltzmann
Two-Phase Flow Model and Its
Application to Heat Transfer
Problems—Part 1. Theoretical
Foundation
A new and generalized lattice Boltzmann model for simulating thermal two-phase flow is
described. In this model, the single component multi-phase lattice Boltzmann model
proposed by Shan and Chen is used to simulate the fluid dynamics. The temperature field
is simulated using the passive-scalar approach, i.e., through modeling the density field of
an extra component, which evolves according to the advection-diffusion equation. By
coupling the fluid dynamics and temperature field through a suitably defined body force
term, the thermal two-phase lattice Boltzmann model is obtained. In this paper, the
theoretical foundations of the model and the validity of the thermal lattice Boltzmann
equation method are laid out, illustrated by analytical and numerical examples. In a
companion paper (P. Yuan and L. Schaefer, 2006, ASME J. Fluids Eng., 128, pp. 151–
156), the numerical results of the new model are reported. �DOI: 10.1115/1.2137343�

Keywords: lattice Boltzmann equation (LBE) method, two-phase flow, interparticle
potential, passive-scalar

1 Introduction
Recently, the lattice Boltzmann equation �LBE� method has

been successfully applied to simulate fluid flow and transport phe-
nomena �1�. Unlike conventional CFD methods, the LBE method
is based on microscopic models and mesoscopic kinetic equations
in which the collective behavior of the particles in a system is
used to simulate the continuum mechanics of the system. Due to
this kinetic nature, the LBE method has been found to be particu-
larly useful in applications involving interfacial dynamics and
complex boundaries, e.g., multiphase or multicomponent flows
�2�.

Several lattice Boltzmann �LB� multiphase fluid models have
been recently proposed. The first immiscible LB model uses red-
and blue-colored particles to represent two kinds of fluids �3�. The
phase separation is then produced by the repulsive interaction
based on the color gradient. The model proposed by Shan and
Chen �SC� imposes a nonlocal interaction between fluid particles
at neighboring lattice sites �4–6�. The interaction potentials con-
trol the form of the equation of state �EOS� of the fluid. Phase
separation occurs automatically when the interaction potentials
are properly chosen. There is also the so-called free-energy-based
approach proposed by Swift et al. �7,8�. The free energy model
has a sound physical basis, and, unlike the SC model, the local
momentum conservation is satisfied. However, this model does
not satisfy Galilean invariance and some unphysical effects will
be produced �9�.

Despite the progress made by these models in simulating mul-
tiphase and multicomponent flows, there is a crucial missing part:
the lack of a satisfactory thermal model for multiphase flows. The
entire above-mentioned multiphase LBE models are all isothermal
models. For single-phase flow, however, there are several LB ther-
mal models, which generally fall in two categories, namely, the

multispeed approach �10� and the passive-scalar approach �11�. In
the passive-scalar approach, the temperature field is passively ad-
vected by the fluid flow and can be simulated as an additional
component of the fluid system. This means in order to solve for
the temperature field in the multiphase isothermal LBE frame-
work, one only needs to solve an auxiliary LBE. Thus, the overall
complexity of the scheme does not significantly increase. Addi-
tionally, the passive-scalar approach does not implement energy
conservation and therefore has the same stability as the isothermal
LBE models.

This paper addresses the multiphase isothermal LBE model as
well as the single phase thermal LBE �TLBE� model using the
passive-scalar approach. First, the LBE method will be briefly
described, with the simulation results of a 2-D lid-driven square
cavity flow presented to validate the code. Then, the multiphase
LBE model and passive-scalar approach will be introduced, re-
spectively, together with some test problem results to assess the
actual ability of these techniques for practical applications. Fi-
nally, in the companion paper �12�, by combining these two mod-
els, the thermal two-phase LBE model will be proposed and nu-
merical results for this model will be reported.

2 Lattice Boltzmann Equation Method
The standard LBE with the Bhatnagar-Gross-Krook approxima-

tion �often referred to as the LBGK� model can be written as

f��x + e��t,t + �t� = f��x,t� −
1

�
�f��x,t� − f�

eq�x,t�� ,

� = 0,1, . . . ,N , �1�

where x denotes the position in space, t is time, �t is the time step,
f� is the particle distribution function �PDF� along the �th direc-
tion and f�

eq is its corresponding equilibrium particle distribution
function, e� is the particle velocity in the �th direction, and � is
the single relaxation time. N is the number of discrete particle
velocities.
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For 2-D flow, the nine-velocity LBE model on the 2-D square
lattice, denoted as the D2Q9 model, has been widely used. For
simulating 3-D flow, there are several cubic lattice models, such
as the D3Q15, D3Q19, and D3Q27 models. Figure 1 presents the
most common lattices.

The equilibrium distribution for all of the D2Q9, D3Q15,
D3Q19, and D3Q27 models can be expressed in the form

f�
eq = �w��1 +

3

c2e� · u +
9

2c4 �e� · u�2 −
3

2c2u · u� �2�

where w� is the weighting factor, c=�x /�t is the lattice speed, �x
is the lattice constant, and u is the macroscopic velocity.

In this paper, we use D2Q9 and D3Q19 for the 2-D and 3-D
simulations, respectively. The weighting factor and discrete veloc-
ity for these two models are given below.

D2Q9:

e� = ��0,0� , � = 0;

�±1,0�c,�0, ± 1�c , � = 1,2,3,4;

�±1, ± 1�c , � = 5,6,7,8.
� �3a�

w� = �
4
9 , � = 0;
1
9 , � = 1,2,3,4;
1
36 , � = 5,6,7,8.

� �3b�

D3Q19:

e�

= ��0,0,0� , � = 0;

�±1,0,0�c,�0, ± 1,0�c,�0,0, ± 1�c , � = 1,2, . . . ,6;

�±1, ± 1,0�c,�±1,0, ± 1�c,�0, ± 1, ± 1�c , � = 7,8, . . . ,18.
�

�4a�

w� = �
1
3 , � = 0;
1
18 , � = 1,2, . . . ,6;
1
36 , � = 7,8, . . . ,18.

� �4b�

In most LBE simulations, Eq. �1� is solved in two steps: colli-
sion and streaming. In the collision step, the PDFs for each direc-
tion are relaxed toward quasi-equilibrium distributions. Then, at
the streaming step, the distributions move to the neighboring
nodes. The local mass density � and the local momentum density
�u are given by

� = 	
�=0

N

f� = 	
�=0

N

f�
eq �5a�

�u = 	
�=0

N

f�e� = 	
�=0

N

f�
eqe� �5b�

It can be shown that the above formulation of the LBE recovers
the Navier-Stokes �N-S� equations for fluid flows near the incom-
pressible limit �low Mach number� �13�. The viscosity in the N-S
equations derived from Eq. �1� is

� = �� − 1
2�cs

2�t �6�

where cs is the lattice sound speed. This option of the viscosity
makes the LBGK scheme a second-order method for solving in-
compressible flow �14�.

How to correctly implement boundary conditions is an impor-
tant issue in LB simulations, since they will influence the accu-
racy and stability of the computation. The most common and sim-
plest boundary condition is the bounce-back boundary condition.
In this boundary condition, when a particle distribution streams to
a wall node, it scatters back to the fluid node along its incoming
link. However, the bounce-back boundary condition only gives

Fig. 1 Discrete velocity vectors for some commonly used 2-D and 3-D particle speed models
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first-order numerical accuracy. To improve it, many boundary con-
ditions have been proposed in the past �15,16�. Among them, the
halfway bounce-back scheme �17� is easy to implement and gives
second-order accuracy for straight walls. The boundary condition
proposed by Mei �18� has the ability of handling complex geom-
etry, e.g., a curved boundary. In this work, we employed these two
boundary treatments in our simulations.

3 Single Component Single Phase LBE Model
To validate the code, numerical simulations were carried out for

a 2-D lid-driven cavity flow for Re=400 and 1000 on a 167
�167 lattice, which gives grid independent results. Furthermore,
for every problem presented in this paper, grid independency was
checked by conducting simulations on different grid resolutions.
The driving lid is placed at the top with a uniform velocity of
Uwall=0.1 in lattice units. Figure 2 shows the streamlines for
Re=1000. The flow structure is in good agreement with the pre-
vious work. Figure 3 shows the velocity component u at the ver-
tical centerline �x /H=1/2� of the cavity.

To quantify the results, the maximum and minimum values of
the stream functions and x and y coordinates of the primary and
secondary vortex centers are listed in Table 1. The results pre-
dicted by the LBE method agree well with other previous work
�19�.

4 Single Component Multiphase LBE Model
Microscopically, the segregation of a fluid system into different

phases is due to the interparticle forces. In the single component
multiphase LBE model proposed by Shan and Chen, a simple
interaction potential is defined to describe the fluid/fluid interac-
tion. Then the model incorporates the forcing due to the potential
by shifting the velocity in the equilibrium distribution. The fluid/
fluid interaction force is defined as �20�

F1�x� = − ��x�	
x�

G�x,x����x���x� − x� �7�

where x and x� denote position �site� in space and G�x ,x�� is
Green’s function and satisfies G�x ,x��=G�x� ,x�. It reflects the
intensity of the interaction, with G�x ,x���0 representing attrac-
tive forces between particles. In our study, the interactions of
nearest and next-nearest neighbors are considered. For a D3Q19
lattice model, this leads to

G�x,x�� = �gf , 
x − x�
 = 1;

gf/2, 
x − x�
 = �2;

0, otherwise.
� �8�

��x� is called the “effective mass” and is defined as a function of
the local density. In the SC model, the function of ��x� can be
varied, and different choices will give a different EOS. Using the
Chapmen-Enskog method of successive approximation, one can
obtain the macroscopic fluid equation of the LBE model. Mean-
while, the EOS is also obtained as p=cs

2�+c0gf���x��2, where c0
is a constant and equals 3.0 for the D2Q9 and D3Q19 models.

In this study, ��x� is taken to be ��x�=�0�1−exp�−� /�0��,
which gives a nonmonotonic pressure-density relationship. Hence
for a certain range of gf values, at a single pressure, two densities
of the same material can coexist. Here, we can say the intensity of
the fluid/fluid interaction gf takes the role of a pseudo-
temperature. For example, when gf falls below a critical value,
phase separation will occur.

Fig. 2 Streamlines of 2-D lid-driven cavity flow at Re=103

Fig. 3 Velocity profiles for u along the vertical geometric cen-
terline of the cavity

Table 1 Vortex centers: stream function and location

Re Mesh=167�167

Primary vortex Lower left vortex Lower right vortex

	max x y 	min x y 	min x y

400
U. Ghia 0.1139 0.5547 0.6055 −1.42E−05 0.0508 0.0469 −6.42E−04 0.8906 0.1250
S. Hou 0.1121 0.5608 0.6078 −1.30E−05 0.0549 0.0510 −6.19E−04 0.8902 0.1255
Present work 0.1120 0.5551 0.6054 −1.28E−05 0.0505 0.0463 −6.15E−04 0.8858 0.1222

1000
U. Ghia 0.1179 0.5313 0.5625 −2.31E−04 0.0859 0.0781 −1.75E−03 0.8594 0.1094
S. Hou 0.1178 0.5333 0.5647 −2.22E−04 0.0902 0.0784 −1.69E−03 0.8667 0.1137
Present work 0.1161 0.5319 0.5652 −2.13E−04 0.0821 0.0769 −1.66E−03 0.8652 0.1125
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At the fluid/solid interface, similarly, a force between fluid par-
ticles and solid surfaces can be introduced into the SC model as
follows �21�:

F2�x� = − ��x�	
x�

Gw�x,x���w�x���x� − x� �9�

where Gw�x ,x�� reflects the intensity of the fluid/solid interaction
and has the same form as G�x ,x��. For the D3Q19 lattice model,

Gw�x,x�� = �gw, 
x − x�
 = 1;

gw/2, 
x − x�
 = �2;

0, otherwise.
� �10�

gw controls the strength between fluid and the wall. gw is positive
for a nonwetting fluid and negative for a wetting fluid. Adjusting
the value of gw can give a different wettability. �w�x�� is the wall
density, which equals one at the wall and zero in the fluid.

Constant body forces such as gravity can be expressed as

F3 = ��x�a �11�

where a is the acceleration due to the body force.
All of these forces can be incorporated into the model by shift-

ing the velocity in the equilibrium distribution. That means the
velocity u in Eq. �2� is replaced with

ueq = u +
�Ftotal

��x�
�12�

where Ftotal=F1+F2+F3.
Then, by averaging the moment before and after the collision,

the whole fluid velocity U is

��x�U = ��x�u + 1
2Ftotal �13�

There are also other approaches for incorporating fluid/fluid
interactions such as the direct body forcing approach, where the
interaction is incorporated into the body force term of the Boltz-
mann equation by adding an additional term after the collision
process �22,23�.

To validate and illustrate the outcomes of this model, we now
present some results of simulations for a 3-D single component
system. First, we observe the transitions from a single-phase fluid
to a two-phase fluid. Initially, the density is evenly distributed on
a 50�50�50 lattice with a small random perturbation. Periodical
boundary conditions are applied in all three coordinate directions.
Figure 4 shows the maximum and minimum densities as functions
of 
gf
, with gf �0 for the attraction between particles. When the
fluid/fluid interaction strength gf decreases under some critical

value gf
c, the system separates from the single-phase to a heavier/

liquid phase and a lighter/vapor phase. Figure 5 is a plot of the
density ratio changing with 
gf
.

After finding the relation between the density ratio and the in-
teraction strength gf, we conducted some static bubble tests.
Again, the 50�50�50 lattice and periodical BCs are used in all
of the tests �24�. Initially, a droplet is placed at the center of the
domain with a radius of rinit=10.0. To ensure that the droplet’s
size will not expand or shrink too much, we specify that the initial
density inside/outside the droplet is close to the maximum/
minimum density obtained in the bifurcation test under the same
gf value. Otherwise, the droplet’s radius is not controllable and the
droplet may sometimes even expand to the boundaries. The drop-
let’s radius oscillates for the first 800 time steps and then goes to
a constant value. Each test was run for 10,000 time steps. At that
point, the relative differences of the maximum magnitudes of the
velocities at time step t and t−1000 are on the order of 10−6,
which means that steady state is reached. For gf =−0.35, the den-
sity and velocity fields in the xy plane at the midpoint of z=25 are
plotted in Figs. 6 and 7, respectively. Other gf values will give
similar results.

Fig. 4 Maximum and minimum density values as a function of
�gf�

Fig. 5 Density ratio as a function of �gf�

Fig. 6 Density contours plot in the xy plane at z=25 „symme-
try plane…
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The nonzero velocity vectors in Fig. 7 indicate the deviation
from the real physical situation. These unphysical velocities are
called spurious currents and reach their maximum value at the
interface region. The maximum magnitude of spurious currents as
a function of 
gf
 is shown in Fig. 8. The maximum magnitude of
the spurious currents increases slowly before 
gf
 reaches 0.32 �the
corresponding density ratio is around 30�, and after that it grows
rapidly. For 
gf
=0.3125, its value is 0.015 29, while for 
gf

=0.35, the value is 0.051 41. We know that the LBE method is
valid only in the incompressible limit 
u
 /cs→0, which requires
that 
u
 is smaller than 0.13. So, in our later simulations, we re-
strict 
gf

0.35, corresponding to a highest density ratio of 42,
which is adequate for many liquid-vapor systems. It is not suitable

for a system with a density ratio higher than 100. However, by
changing the EOS, we can greatly reduce the spurious currents.
We defer this discussion to a future publication.

We also conducted some static droplet tests with a solid wall
interaction by replacing the periodical BCs in the y and z direc-
tions with wall BCs. Similar density and velocity fields were ob-
tained and the spurious currents did not increase.

The static contact angle can be adjusted in LB simulations by
changing the value or form of Gw�x ,x�� or even by changing the
form of Eq. �9�; say, e.g., by changing the density term in Eq. �9�
to some function of local density. In this way, we can easily con-
trol the wettability.

In our simulations, initially a half liquid drop of radius 10.0 is
placed at the bottom of the solid wall with its center at the geo-
metric center of the bottom wall. The lattice size is 50�50�50
with periodical BCs in the x direction and wall BCs in the y and z
directions.

Figure 9 shows two contact angles obtained by adjusting gw.
Figure 10 gives the corresponding velocity fields. The maximum
spurious current stays at the same level as in the static bubble test.

Figure 11 plots the contact angle varying with gw, which is
almost a linear relation. This is in agreement with the work of
other researchers �25�.

For large gw values �gw�0.08�, after the half liquid drop is
placed on the bottom, because of the large interaction between the
fluid and solid, the liquid phase contacting with the solid will
shrink very fast and will generate some unphysical phenomena. In
this case, gw must be increased step by step until a stable contact
angle is obtained.

We also conducted simulations for a different form of Eq. �9�.
For example, instead of using ��x�, we used the “effective mass,”
i.e., ��x�=�0�1−exp�−� /�0��. For this case, the linear relation
between the contact angle � and the fluid/solid interaction strength
gw is still obtained. However, the slope will change. For the ef-
fective mass case, the slope is smaller than using local density
directly. Also, different values of gw for the liquid and vapor
phases can be used. If these values are properly specified, the
linear relation between contact angle � and the liquid/solid inter-
action strength gw

l will again be obtained �in this case, vapor/solid
interaction strength gw

v is fixed�.
One necessary point with respect to these results is that al-

though any static contact angle can be obtained, there is no guar-
antee that the fluid dynamics near the contact line are correctly
simulated �23�. The details of the fluid/solid interaction are not
fully understood and need future research.

5 Thermal LBE Model Using the Passive-Scalar Ap-
proach

In spite of the success achieved in isothermal flow simulations,
the progress in thermal flow simulations is rather limited. Gener-
ally, the existing TLBE models fall into two categories, namely,
the multispeed approach and the passive-scalar approach. The
multispeed approach implements energy conservation by adding
additional speeds and by including the higher-velocity terms in the
equilibrium distribution. Although theoretically possible, the mul-
tispeed approach suffers severe numerical instability �26,27�. An-
other limitation for the multispeed approach is that the Prandtl
number is fixed �at 0.5� for the simulation �10�. However, if the
viscous and compressive heating effects are negligible, the tem-
perature field satisfies a much simpler passive-scalar equation,
which can be simulated by solving an additional LBE.

The fluid dynamics can be solved as before by using Eqs. �1�
and �2�. The temperature field satisfies the following passive-
scalar equation:

Fig. 7 Velocity vectors plot in the xy plane at z=25 „symmetry
plane…

Fig. 8 The maximum magnitude of spurious currents changes
with �gf�
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�T

�t
+ u · �T = � · �� � T� +  �14�

where u is the whole fluid velocity, � is the thermal diffusivity,
and  is the source term.

Equation �14� can be solved in the LB framework by also using
Eqs. �1� and �2�, except that � will be replaced by �T �the dimen-
sionless single relaxation time for temperature� and the summa-
tion of PDFs will give the temperature value.

As before, �= ��T− 1
2

�cs
2�t and thus the Prandtl number will be

Pr =
�

�
=

2� − 1

2�T − 1
�15�

By changing � and/or �T, we can generate a different Prandtl num-
ber.

Two different thermal BCs were tested in our simulations. Here
we explain them in the context of a D2Q9 model.

�i� Isothermal wall: Suppose the temperature is fixed as TB at
the bottom wall. After streaming, f2, f5, and f6 are unknowns.
Assume these unknown PDFs equal their equilibrium distribution
given by Eq. �2� with � replaced by some unknown temperature
T�. Summing these three PDFs together, we have �28�

Fig. 9 Density contours for different values of gw „different
wettabilities…: „a… gw=0.06, �=120.6° and „b… gw=−0.03, �
=71.3°

Fig. 10 Velocity fields for different values of gw: „a… gw=0.06
and „b… gw=−0.03
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f2 + f5 + f6 = 1
6T��1 + 3uy + 3uy

2� �16�

where uy is the velocity normal to the wall. If we know T�, we
will be able to solve for f2, f5, and f6. Meanwhile, we notice that
for the isothermal wall, 	�=0

8 f =TB. Substituting Eq. �16� into this,
T� then can be calculated as follows:

T� =
6

1 + 3uy + 3uy
2 �TB − f0 − f1 − f3 − f4 − f7 − f8� �17�

Finally, f2, f5, and f6 can be obtained by substituting T� into Eq.
�2�. This method can be easily extended to the 3-D case.

�ii� Heat flux BC: After streaming, the temperature of the inner
domain can be obtained. A second-order finite difference scheme
is used to get the temperature on the wall �29�, i.e., for the bottom
wall at y=0, 
�T /�y
i,1= �4Ti,2−Ti,3−3Ti,1� /2�y. After finding the
wall temperature, the same procedure as described in the isother-
mal wall case is used to calculate the unknown PDFs.

A good benchmark test for a thermal fluid system is Rayleigh-
Bénard convection �RBC�, where a horizontal layer of viscous
fluid is heated from the bottom and the top boundary is main-
tained at a lower temperature �30�. When the temperature differ-
ence between the bottom and top boundaries exceeds some thresh-
old, the static conduction becomes unstable. Any small
perturbation will make the system become convective.

We simulated 2-D and 3-D RBC by using the D2Q9 and
D3Q19 models, respectively. In the 2-D simulation, the tempera-
tures at the bottom wall �y=0� and top wall �y=1� are kept at
TB=1 and TT=0, respectively. So, �T=TB−TT=1. A lattice size of
101�50 is used in the simulation. The two nondimensional terms
used to describe the system are the Prandtl number and the Ray-
leigh number. The Prandtl number is defined in Eq. �15�. The
Rayleigh number is defined as

Ra =
g��TNy

3

��
�18�

where g is the acceleration due to gravity, � is the thermal expan-
sion coefficient, and Ny is the lattice size in the y direction.

The Boussinesq approximation is used, which assumes that the
material properties are independent of temperature except in the
body force term. For the gravitational term, the density is assumed
to be a linear function of the temperature. In the LBE method, a
fluid is always compressible. By introducing gravity we inevitably
introduce a compressibility error into the system. In order to
eliminate this compressible effect, the part of the gravity force

which corresponds to the buoyancy force in the static conduction
state is absorbed in the pressure term, which leads to the following
expression of the external force:

�G = ��g�T − T*�j �19�

where T*=TB−y�T. This body force can be incorporated into the
simulation by using the method given in Sec. 4 �the so-called
shifting equilibrium velocity method� or by adding an additional
term after the collision process.

We calculated the RBC at different Ra and Pr numbers. Figure
12 plots the typical velocity vectors and isotherms at Ra=5000
and Pr=1.0.

In order to evaluate the accuracy of the method, the onset of
RBC was also tested. The simulation was conducted at different
Ra numbers around the critical Ra number Rac, and then the
growth rate �rate of increase of the maximum velocity in the y
direction� was measured. The results are shown in Fig. 13, in
which the growth rates are plotted against the Ra number. The
zero growth rate corresponds to the critical Ra number. Using a

Fig. 11 The relation between the contact angle � of the bubble
and the fluid/solid interaction strength gw

Fig. 12 Velocity vectors and isotherms at Ra=5000 and Pr
=1.0: „a… velocity vectors and „b… isotherms

Fig. 13 Growth rate of instability vs Ra number
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least squares fit, the critical Ra number is found to be 1702.436,
which agrees well with the theoretical value of 1707.762 obtained
by linear stability theory. The relative error is 0.3119%.

Another useful test for code validation is a 2-D heat conduction
problem with heat generation inside the domain. A square domain
�length L=1.0, height H=1.0� with an adiabatic BC at the top and
right walls, a uniform temperature TL=2.0 at the left wall, and a
uniform temperature TB=1.0 at the bottom wall are calculated in a
50�50 mesh. Additionally, there is heat generation q� inside the
domain. Initially, the domain has a uniform temperature of 2.0.

To represent heat generation properly in the LB context, we
compare the nondimensional heat generation in a real problem
and in the LBE method. These two values should equal. This
means that

q* =
q�L2

kT0
=

qLu� LLu
2

kLuT0,Lu
=

qLu� LLu
2

�Lu�LucV,LuT0,Lu
�20�

where the subscript “Lu” denotes a lattice unit, T0 is some refer-
ence temperature, and k is the thermal conductivity. In the LBE
method, we only specify the thermal diffusivity �. Hence �Lu and
cV,Lu are set to be unity. Then

qLu� =
q*�LuT0,Lu

LLu
2 �21�

Similarly, the time step in the LBE method can be related to the
physical time through

t* =
�t

L2 =
�LutLu

LLu
2 �22�

For comparison, the finite difference �FD� method is also used
to evaluate the same problem. Using the same grid resolution, the
average error is E8.4�10−4, where E is defined by

E =
�	x 	y

�TLBE�x,y� − TFD�x,y��2

�	x 	y
TFD

2 �x,y�
�23�

Figure 14 shows the isotherms at the steady state obtained by the
LBE method. Figure 15 shows the Nusselt number at the top wall
�adiabatic wall� with respect to the time step in the LBE simula-

tion, which is a very small value. This test shows that the heat flux
BC and heat source term are properly incorporated in the LBE
method. Furthermore, the heat source term can be related to the
viscous and compressive heating terms, which will greatly extend
the scope of the method.

6 Discussion
We have demonstrated the applicability of the LBE method in

simulating multiphase flow and thermal flow systems. The single
component multiphase LBE model has the ability to simulate
phase separation, variable wettability, and different EOS as well
as complex BCs. Additionally, the simulation results of the ther-
mal system using the passive-scalar TLBE model are in good
agreement with established analytical or numerical results. Com-
bining these two models, in Part 2 �12� we will propose a thermal
two-phase LBE model with the fluid dynamics simulated by an
isothermal single component multiphase LBE, and the tempera-
ture field determined by an additional passive-scalar equation. The
coupling of these two parts is through a suitably defined body
force term in the isothermal LBE.
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Nomenclature
a � acceleration
c � lattice speed

cs � lattice sound speed
cV � specific heat capacity
e� � lattice particle’s speed
f� � particle distribution function
f�
eq � equilibrium particle distribution function
F � force per unit mass
g � gravitational constant

gf � intensity of fluid/fluid interaction
gw � intensity of fluid/solid interaction
G � buoyancy force per unit mass

G�x ,x�� � Green’s function �related to the fluid/fluid in-
teraction potential�

Gw�x ,x�� � Green’s function �related to the fluid/solid in-
teraction potential�

H � height of the domain
k � thermal conductivity
L � length of the domain

Ny ,Nz � lattice size in the y and z directions

Fig. 14 Isotherms at steady state obtained by the LBE method

Fig. 15 Nusselt number at the top wall with respect to the time
step obtained by the LBE method
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q� � heat generation per volume
q* � nondimensional heat

t � time
t* � nondimensional time
T � temperature

T* � reference temperature
u ,U � fluid velocity

ueq � equilibrium velocity
U� � characteristic velocity
w� � weight coefficients

x ,x� � position
� � thermal diffusivity
� � thermal expansion coefficient

�T � temperature difference
� � density

�w � wall density
� � kinematic viscosity
� � relaxation time

�T � relaxation time for temperature field
� � effective mass
 � heat source term
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pp. 142–150), the multiphase isothermal lattice Boltzmann equation (LBE) model and
single phase thermal LBE (TLBE) model were described. In this work, by combining
these two models, the thermal two-phase LBE model is proposed. The coupling of the two
models is through a suitably defined body force term. Due to the external nature of this
coupling, the new model will have the same stability as the isothermal two-phase model.
The applicability of the model is shown by the numerical simulation results of a thermal
two-phase flow system in a rectangular channel. Our preliminary studies show that dif-
ferent equations of state, variable wettability, gravity and buoyancy effects, and relatively
high Rayleigh numbers can be readily simulated by this new model.
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1 Introduction
The lattice Boltzmann equation �LBE� method is a kinetic ap-

proach, which assumes that a fluid consists of mesoscopic fluid
particles with repeating collision and streaming patterns and is
used to solve for the hydrodynamic phenomena of various sys-
tems. Due to its kinetic nature, the LBE method has been found to
be particularly useful in applications involving interfacial dynam-
ics and complex boundaries, e.g., multiphase or multicomponent
flows �1,2�.

In the previous paper �Part 1� �3�, the theoretical foundation of
the multiphase isothermal LBE model and single phase thermal
LBE model were described, along with numerical simulations that
validate their applications.

In the multiphase LBE model proposed by Shan and Chen �SC�
�4–6�, the nonlocal interaction potentials between fluid particles at
neighboring lattice sites were imposed to mimic the interparticle
forces and the phase separation occurs automatically. The form of
the equation of state �EOS� was also controlled by the interaction
potentials. A strong limitation of these types of multiphase mod-
els, however, is that they are all isothermal models. Researchers
have developed thermal LBE �TLBE� models, but they focus on
single-phase flow, a highly restrictive application. These TBLE
models generally fall in two categories, namely, the multispeed
approach �7–9� and the passive-scalar approach �10,11�. The
passive-scalar approach has many advantages in that the tempera-
ture field is passively advected by the fluid flow and can therefore
simply be simulated as an additional component of the fluid sys-
tem. Thus, the overall complexity of the scheme does not signifi-
cantly increase, and the passive-scalar approach has the same sta-
bility as isothermal LBE models.

In order to provide a more generalized approach to the kinetic
modeling of complex flows, this paper presents a multi-

dimensional and multiphase fluid model with thermal effects.
First, the multiphase isothermal LBE model proposed by SC and
the single phase TLBE model using the passive-scalar approach
will be briefly recapped, while the full description and numerical
validation of the techniques are given in Part 1 �3�. Then, by
combining these two models, our thermal multiphase LBE model
is proposed. The coupling of the two models is through a suitably
defined body force term. In order to show the applicability of the
new model, numerical simulation results for a thermal two-phase
flow system in a rectangular channel are presented. The effects of
varying different parameters will also be discussed. The paper
concludes with a discussion about the method’s applicability and
perspectives.

2 The 3-D Isothermal Multiphase LBE
The standard LBE with the Bhatnagar-Gross-Krook approxima-

tion �often referred to as the LBGK� model can be written as

f��x + e��t,t + �t� = f��x,t� −
1

�
�f��x,t� − f�

eq�x,t�� ,

� = 0,1, . . . ,N �1�

where x denotes the position in space, t is time, �t is the time step,
f� is the particle distribution function �PDF� along the �th direc-
tion and f�

eq is its corresponding equilibrium particle distribution
function, e� is the particle velocity in the �th direction, � is the
single relaxation time, and N is the number of discrete particle
velocities.

For 2-D flow, the nine-velocity LBE model on the 2-D square
lattice, denoted as the D2Q9 model, has been widely used. For
simulating 3-D flows, there are several cubic lattice models, such
as the D3Q15, D3Q19, and D3Q27 model. The equilibrium dis-
tribution for all the D2Q9, D3Q15, D3Q19, and D3Q27 models
can be expressed in the form
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f�
eq = �w��1 +

3

c2e� · u +
9

2c4 �e� · u�2 −
3

2c2u · u� �2�

where w� is the weighting factor, c=�x /�t is the lattice speed, �x
is the lattice constant, and u is the macroscopic velocity.

In this paper, we use the D3Q19 model, for which the weight-
ing factor and discrete velocity are given below:

e�

= ��0,0,0� � = 0;

�±1,0,0�c,�0, ± 1,0�c,�0,0, ± 1�c , � = 1,2, . . . ,6;

�±1, ± 1,0�c,�±1,0, ± 1�c,�0, ± 1, ± 1�c , � = 7,8, . . . ,18.
�

�3a�

w� = �
1
3 , � = 0;
1
18 , � = 1,2, . . . ,6;
1
36 , � = 7,8, . . . ,18.

� �3b�

In most LBE simulations, Eq. �1� is solved in two steps: colli-
sion and streaming. In the collision step, the PDFs for each direc-
tion are relaxed toward quasi-equilibrium distributions. Then, at
the streaming step, the distributions move to the neighboring
nodes. The local mass density � and the local momentum density
�u are given by

� = 	
�=0

N

f� = 	
�=0

N

f�
eq �4a�

�u = 	
�=0

N

f�e� = 	
�=0

N

f�
eqe� �4b�

It can be shown that the above formulation of the LBE recovers
the Navier-Stokes �N-S� equations for fluid flows near the incom-
pressible limit �low Mach number� �12�. The viscosity in the N-S
equations derived from Eq. �1� is

� = �� − 1
2�cs

2�t �5�

where cs is the lattice sound speed.
Microscopically, the segregation of a fluid system into different

phases is due to the interparticle forces. In this work, the interac-
tion potential model of SC is employed to simulate these interac-
tion forces. In the SC model, the fluid/fluid interaction force is
defined as �13�

F1�x� = − ��x�	
x�

G�x,x����x���x� − x� �6�

where G�x ,x�� is interaction potential and satisfies G�x ,x��
=G�x� ,x�. It reflects the intensity of the interaction, with
G�x ,x���0 representing attractive forces between particles. In
our study, the interactions of nearest and next-nearest neighbors
are considered. For a D3Q19 lattice model, this leads to

G�x,x�� = �gf , 
x − x�
 = 1;

gf/2, 
x − x�
 = �2;

0, otherwise.
� �7�

��x� is called the “effective mass” and is defined as a function of
the local density. In the SC model, the function of ��x� can be
varied and different choices will give different EOS. The EOS is
determined by p=cs

2�+c0gf���x��2, where c0 is a constant and
equals 3.0 for the D3Q19 model. In this study, ��x� is taken to be
��x�=�0�1−exp�−� /�0��, which gives a nonmonotonic pressure-
density relationship.

Similarly, at the fluid/solid interface, a force between fluid par-
ticles and solid surfaces can be introduced as follows:

F2�x� = − ��x�	
x�

Gw�x,x���w�x���x� − x� �8�

where Gw�x ,x�� reflects the intensity of the fluid/solid interaction
and has the same form as G�x ,x��. For the D3Q19 lattice model,

Gw�x,x�� = �gw, 
x − x�
 = 1;

gw/2, 
x − x�
 = �2;

0, otherwise.
� �9�

gw controls the strength between fluid and the wall. gw is positive
for a nonwetting fluid and negative for a wetting fluid. Adjusting
the value of gw can give a different wettability. �w�x�� is the wall
density, which equals one at the wall and zero in the fluid.

Finally, constant body forces such as gravity can be expressed
as

F3 = ��x�a �10�

where a is the acceleration due to the body force.
All of these forces can be incorporated into the model by shift-

ing the velocity in the equilibrium distribution. That means we
replace the velocity u in Eq. �2� with

ueq = u +
�Ftotal

��x�
�11�

where Ftotal=F1+F2+F3.
Then, by averaging the moment before and after the collision,

the whole fluid velocity U is found by:

��x�U = ��x�u + 1
2Ftotal �12�

3 Single Phase Thermal 3-D LBE Model
The SC model is an isothermal model. In order to take thermal

effects into account, we introduced the single phase TLBE model
using the passive-scalar approach.

If the viscous and compressive heating effects are negligible,
the temperature field satisfies a much simpler passive-scalar equa-
tion:

�T

�t
+ u · �T = � · �� � T� + � �13�

where u is the whole fluid velocity, � is the thermal diffusivity,
and � is the source term.

Equation �13� can be solved in the LB framework by also using
Eqs. �1� and �2�, except that � will be replaced by �T �the dimen-
sionless single relaxation time for temperature� and the summa-
tion of PDFs will give the temperature value. In this way, the
temperature field can be simulated by solving an additional LBE.

As before, �= ��T− 1
2

�cs
2�t, and thus the Prandtl number will be

Pr =
�

�
=

2� − 1

2�T − 1
�14�

By changing � and/or �T, we can generate a different Prandtl num-
ber.

4 Multiphase Thermal 3-D LBE Model
Combining the single component two-phase LBE model �SC

model� and the passive-scalar TLBE model, the single component
two-phase TLBE model is proposed. In this model, the fluid dy-
namics are simulated by an isothermal LBE model with the inter-
particle potential incorporated. The temperature field is deter-
mined by an additional passive-scalar equation and the coupling
of these two parts is through a suitably defined body force term in
the isothermal LBE model. In dealing with this body force, the
Boussinesq approximation is adopted, which assumes that the ma-
terial properties are independent of temperature except in the body
force term. For the gravitational term, the density is assumed to be
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a linear function of the temperature. Therefore, the buoyancy term
induced by the gravity and temperature difference can be ex-
pressed as

��x�G = ��x�g�1 −
��

��x�
�k − 	�g�T − T*�k �15�

where �� is the average density of the mixture in the entire do-
main; g is the acceleration due to gravity; T* is the reference
temperature, which is usually equal to the temperature at the pure
conduction state; and 	 is the thermal expansion coefficient,
which we assume is equal for the two phases. However, 	 can
also easily be specified to be different values for different phases.
In Eq. �15�, the first term on the right-hand side �RHS� represents
the buoyancy force due to the density difference. The second term
on the RHS represents the buoyancy force due to the temperature
difference.

Although conceptually very simple, this model can produce a
nonideal gas EOS and capture the temperature field at the same
time. In comparison to other multi-phase TLBE models, it is easy
to realize and more stable because it does not require adding more
particle speeds or tracking the energy evolution. The stability is
determined by the fluid dynamics, and the temperature field has
no influence on it. Also, the energy source term � reserves the
space for adding viscous and compressive heating terms in the
future.

Another important point is that we have not considered phase
transition and latent heat in the current model. In general, the
phase transition phenomena are strongly related to the thermody-
namics and are very complicated in mechanics. The phase transi-
tion rate is a function of thermodynamic properties such as tem-
perature and pressure. In order to consider phase transition in the
LB context, one needs to consider how to link the phase transition
rate with these thermodynamic properties and how to incorporate
latent heat into the scheme. Some pioneering work has been done
by using simple approximations. For example, Kono and Ishizuka
�14� specify a constant phase change rate in their model and relate
it to the latent heat. Miller and Succi �15� studied anisotropic
crystal growth from melt. They use a phase-field equation to simu-
late the phase transition and consider latent heat as an extra force
term.

5 Simulation Results
We simulated the thermal two-phase system in a rectangular

channel under different conditions �different Reynolds number,
different Rayleigh number, and different boundary conditions�.
Most of the simulations were conducted on a 50
50
50 lattice
size with a periodical boundary condition �BC� in the x direction
and wall boundary conditions �BCs� in the y and z directions for
the fluid dynamics. Grid independency was checked for all of the
different resolutions used in the paper by varying the lattice sizes,
as detailed in Part 1 �3�.

A body force in the x direction is included. Defining the char-
acteristic velocity U� �in lattice units� as U�=��x�aNz

2 /�

=aNz
2 /�, the Reynolds number will hence be

Re =
U�Nz

�
=

aNz
3

�2 �16�

where a is the acceleration due to the body force.
For the simulation, the bottom wall and top wall are kept at

fixed temperatures of 1.0 and 0.0, respectively. The vertical walls
are adiabatic. Therefore, the Rayleigh number is defined as

Ra =
g	�TNy

3

��
�17�

where �T is the characteristic temperature difference �in the simu-
lation �T=TB−TT=1� and Nz is the lattice size in the z direction.

Initially, a droplet is placed at the center of the domain with no
force on it. After several hundred time steps, the droplet reaches
equilibrium. This equilibrium process is needed; otherwise, the
code fails to converge. Next the buoyancy force in the z direction
and the body force in the x direction will be turned on. Because of
the buoyancy force, the droplet will fall until it reaches the bottom
wall. Due to different wettabilities at the wall, it can form differ-
ent contact angles. If the relative difference of the maximum mag-
nitude of the velocities at time step t and at t−100 is smaller than
a given tolerance, steady state is considered to be reached �in this
case, all other variables also have a small relative change�. If
steady state cannot be reached �in this case, usually the system
will exhibit some periodical feature�, the duration of the simula-
tion �more than 20,000 time steps in lattice units� will produce
statistical results.

5.1 Multiphase Thermal Flow Base Case. First, we present
our results for two-phase flow at given Rayleigh numbers. The
strength of the interparticle force gf =−0.35 and the initial droplet
radius is 7.0. The Reynolds number is held at 100.

Figure 1 shows the isotherm contours, density contours, and
velocity vectors in the xz plane at y=25 �the symmetric plane� for
Ra=10,000 and Re=100. The isotherms form ascending and de-
scending fluid sheets in the vapor phase. In the liquid phase, the
isotherms are flattened. This is mainly because the buoyancy force
due to the temperature difference is balanced by the buoyancy
force due to the density difference in the liquid phase. Currently,
the liquid and vapor phases in our model have the same properties
except for densities. However, the code has the potential for speci-
fying different properties for different phases and also specifying
different EOS. This will be the next step of our research.

In our static bubble test, we observed that there exist nonzero
velocity vectors in the flow field which indicate deviation from the
real physical situation. These unphysical velocities are called spu-
rious currents and reach their maximum value at the interface
region. The spurious currents have an influence on the tempera-
ture field and will affect local heat transfer results. This is verified
because we are using the velocity of the flow as the advection
velocity of the temperature. The fluctuation of the isotherms near
the top interface of the droplet shows this influence. However, as
for the large scale or overall heat transfer results, we can ignore
this influence for two reasons. First, these spurious currents are
mostly constrained to be in the interface region and will not ex-
tend to a distance far away from the interface. Second, for 
gf

0.35, compared with the main flow velocity, the magnitude of
the spurious currents is relatively small and can be neglected.
Also, by changing the EOS, we can greatly reduce the spurious
currents. This relationship will be explored further in our future
work.

5.2 Effect of Varying Rayleigh Number. Figure 2 shows the
isotherms and density contours in the xz-plane at y=25 for Ra
=5000 and 15,000. As the Rayleigh number increases, the tem-
perature gradient near the wall becomes sharper: in the Ra
=5000 case, the isotherms are almost straight lines and evenly
distributed, while in the Ra=15,000 case the isotherms are highly
curved and much thicker near the wall. Also, as the Rayleigh
number increases, the ascending and descending fluid sheets be-
come narrower.

5.3 Nusselt Number Variation. The Nusselt number of the
bulk flow is defined as

Nu = 1 +
�uz�T − T*�Nz

��T
�18�

where uz is the velocity in the z direction; T* is the reference
temperature, here using the temperature at the pure conduction
state; Nz is the lattice size in the z direction; and �· represents the
average over the whole flow domain.
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The Nusselt number of the bulk flow, at the top wall, and at the
bottom wall as functions of the time step are shown in Fig. 3, with
Ra=10,000 and Re=100.

Instead of approaching a constant value, all three values have
small fluctuations throughout the simulation. The fluctuation ex-
hibits periodical features. The characteristic Nusselt number can
be obtained by averaging the instantaneous values over time.

Figure 4 shows the bulk Nusselt number changing with the time
step at different Rayleigh numbers. The bulk Nusselt number in-
creases as the Rayleigh number increases. The magnitude of the
fluctuations also increases with increasing Rayleigh number.

The two-phase flow system under different Reynolds numbers
is also simulated. The Rayleigh number is fixed at 10,000 and the
Reynolds number takes the value 20, 100, and 500, respectively.

Figure 5 shows the bulk Nusselt number changing with time step
at different Reynolds numbers. For Re=20, the bulk Nusselt num-
ber is 1.808, which is slightly higher than that of Re=100 �1.771�,
and the fluctuation is much smaller �almost a constant value�. For
Re=500, the bulk Nusselt number �1.493� as well as the Nusselt
number at the top and bottom walls is smaller than the Re=100
case.

These results seem counter-intuitive. We believe the main rea-
son is that the larger velocity in the x direction suppresses the
convection in the z direction. In this problem, the temperature
difference between the upper wall and the lower wall is the main
driving force for the heat transfer. Therefore, a better convection

Fig. 1 Isotherms, density contours, and velocity vectors at
Ra=10,000 and Re=100: „a… isotherms and density contours
and „b… velocity vectors

Fig. 2 Isotherms and density contours at different Rayleigh
number: „a… Ra=5000 and „b… Ra=15,000
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in the z direction will result in a higher Nusselt number. However,
as the Reynolds number increases, the convection in the z direc-
tion decreases, which can be seen from the isotherms of the xz
plane �y=25� in Fig. 6 �Re=500 case�, where the isotherms are
almost straight lines in the x direction. Also shown in Fig. 6 are
the isotherms in the yz plane �x=25�, which form some ascending
and descending fluid sheets. Compared with Fig. 1�a� �Re=100
case�, these fluid sheets are wider and flatter.

5.4 Effect of Fluid/Solid Interaction Strength. The influ-
ence of the fluid/solid interaction on the system is also investi-
gated. Different gw values �0.06 and −0.03� are used, which rep-
resent a typical nonwetting and wetting fluid. The contact angles
for these two cases are 120.6 and 71.3 deg, respectively. The Rey-
nolds number and Rayleigh number are fixed at 100 and 10,000.
Table 1 lists the Nusselt number of the bulk flow, at the top wall,
and at the bottom wall under different gw values. Because of the
fluctuation, the Nusselt number is averaged over the time steps.
Compared to the no fluid/solid interaction case, the wetting case
�gw=−0.03� has a higher Nusselt number at the top wall and a
lower Nusselt number at the bottom wall, and the bulk Nusselt
number is increased. On the other hand, the nonwetting case �gw

Fig. 3 Nusselt number of the bulk flow, at the top wall, and at
the bottom wall as functions of the time step „Ra=10,000, Re
=100…

Fig. 4 The bulk Nusselt number changing with time step at
different Rayleigh numbers

Fig. 5 The bulk Nusselt number changing with time step at
different Reynolds numbers

Fig. 6 Isotherms and density contours at Ra=10,000 and Re
=500: „a… xz plane „y=25… and „b… yz plane „x=25…
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=0.06� has a lower Nusselt number at the top wall and a higher
Nusselt number at the bottom wall, and the bulk Nusselt number
is decreased.

An explanation for this phenomenon is that as the gw value
increases, the contact area between the droplet and the wall de-
creases, and the height of the droplet increases. This will increase
the convection at the bottom wall since more area is exposed to
the convection of the vapor phase. However, the bulk Nusselt
number is decreased because the droplet extends deeper to the
center and hampers the convection in that region.

6 Discussion
In this work, we have proposed a thermal two-phase LBE

model. In this model, the fluid dynamics is simulated by an iso-
thermal single component multiphase LBE, and the temperature
field is determined by an additional passive-scalar equation. The
coupling of these two parts is through a suitably defined body
force term in the isothermal LBE. The applicability of our model
is demonstrated through numerical simulations. This new model
can simulate a thermal two-phase flow system with a non-ideal
gas EOS. Because the coupling is external, the new model has the
same stability as the isothermal LBE model. Furthermore, it is
simple and easy to code. Our preliminary studies show that dif-
ferent EOS, variable wettability, gravity and buoyancy effects, and
relatively high Rayleigh numbers can be readily simulated by the
new model. Also, the new model has the ability to handle complex
BCs. For the future, further research is needed in incorporating a
more realistic EOS, handling two phases with a higher density
ratio, reducing the spurious currents, and dealing with phase tran-
sition.
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Nomenclature
a � acceleration
c � lattice speed

cs � lattice sound speed
cV � specific heat capacity
e� � lattice particle’s speed
f� � particle distribution function
f�
eq � equilibrium particle distribution function
F � force per unit mass
g � gravitational constant

gf � intensity of fluid/fluid interaction
gw � intensity of fluid/solid interaction
G � buoyancy force per unit mass

G�x ,x�� � Green’s function �related to the fluid/fluid in-
teraction potential�

Gw�x ,x�� � Green’s function �related to the fluid/solid in-
teraction potential�

Nz � lattice size in the z direction
t � time

T � temperature
T* � reference temperature

u ,U � fluid velocity
ueq � equilibrium velocity
U� � characteristic velocity
w� � weight coefficients

x, x� � position
� � thermal diffusivity
	 � thermal expansion coefficient

�T � temperature difference
� � density

�w � wall density
� � kinematic viscosity
� � relaxation time

�T � relaxation time for temperature field
� � effective mass
� � heat source term
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Table 1 Nusselt number at different gw values
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gw
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0.06 1.733 1.722 1.954
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Improving Falling Ball Tests for
Viscosity Determination
Laboratory experiments and numerical simulations are performed to determine the ac-
curacy and reproducibility of the falling-ball test for viscosity determination in Newton-
ian fluids. The results explore the wall and end effects of the containing cylinder and
other possible sources that affect the accuracy and reproducibility of the falling ball tests.
A formal error analysis of the falling-ball method, an evaluation of the relative merits of
calibration and individual measurements, and an analysis of reproducibility in the
falling-ball test are performed. Recommendations based on this study for improving both
the accuracy and reproducibility of the falling-ball test are presented.
�DOI: 10.1115/1.2137345�

1 Introduction
A falling ball viscometer is one of the simplest, yet most accu-

rate, means of determining the low shear rate viscosity of liquids
�1�. It provides a standard way to check quality in plastics pro-
cessing �ISO 12058� and is applicable for testing of petroleum
products, pharmaceuticals, and beverage and food products, to
name a few �2�. Because a falling ball viscometer is simple to
construct and operate, it can be a cost- and time-effective means
to determine properties of transparent liquids, especially for re-
search applications or in cases in which measurements are only
required infrequently. It is especially useful in applications con-
cerning highly viscous liquids, where capillary tube viscometry
can be inconvenient. However, the danger in constructing a home-
made viscometer is that the precision may not be as well under-
stood. We will examine the major causes of inaccuracies in falling
ball viscometry and make recommendations on ways to improve
both the accuracy and reproducibility of these measurements.

In falling-ball rheometry, a sphere is allowed to fall under the
influence of gravity in a quiescent liquid. The sphere, initially at
rest, will accelerate until it reaches a constant velocity. At steady
state, the sum of all of the forces on the ball must be zero and the
gravitational force exactly balances the buoyant and kinetic forces
on the particle. The governing equation for falling-ball rheometry
is derived from Stokes’ solution to the conservation of momentum
equation for uniform, low Reynolds number flow past a sphere for
the kinetic forces �3� combined with the steady-state force balance
in an unbounded Newtonian liquid under conditions such that
only hydrodynamic forces exert an appreciable effect. The results
show that the terminal velocity, vt, is a known function of the fluid
viscosity, �, the physical characteristics of the falling ball, and the
material properties of the liquid:

vt =
2

9
·

g�� f − � fl�a2

��
. �1�

Here � f is the density of the falling ball, � fl is the density of the
fluid, a is the radius of the falling ball, and � is a correction factor
used to account for effects not in Stokes’ original formulation �i.e.,

wall effects, inertial effects� �4–7�. Using this simple formula,
experiments can be designed to measure the viscosity of a fluid at
low shear rates using relatively precise and inexpensive methods.

In order to obtain high precision results in systems contained in
finite-sized cylinders, falling-ball rheometry must be corrected for
the additional drag due to the presence of bounding walls. In
Stokes’ original assumptions, it was specified that the fluid was
unbounded and infinite. Subsequently, several researchers have
devised methods for corrections to the Stokes drag force due to
wall effects. Faxen �4� performed the initial study that derived a
theoretical prediction of the correction factor for balls settling
along the centerline of a cylinder that is accurate to first-order
terms of a /R �the ratio of the falling ball to containing cylinder
radii� and Reynolds number �based on the falling ball diameter� of
zero. Bohlin �5� extended this work by developing an infinite
series for a /R terms, valid for a /R ratios between 0 and 0.6. He
gives the formula for K through the tenth power as

� = 1��1 − 2.104 43� a

R
� + 2.088 77� a

R
�3

− 0.948 13� a

R
�5

− 1.372� a

R
�6

+ 3.87� a

R
�8

− 4.19� a

R
�10

+ ¯ 	 . �2�

Haberman and Sayre �6� further extended this work by posing a
theory that provides a much more accurate correction for 0.6
�a /R�0.8 as well as validating Bohlin’s correction for 0.6
�a /R.

The corrections described above provide wall corrections for
the axisymmetric case in which the trajectory of the falling ball is
along the axis of the cylinder. Brenner and Happel �7� first devel-
oped corrections for an off-center case. They define � as

� =
1

1 − f�b/R� · �a/R�
, �3�

where b is the distance between the center of the ball and the axis
of the cylinder. The eccentricity function, f�b /R�, is in terms of
integrals of an infinite series of Bessel functions. Famularo �8�
calculated values for this function for several values of b /R.
These results are tabulated in �9�. For small values of a /R and
b /R→0, the following function is valid:

f� b

R
� = 2.104 44 − 0.6977� b

R
�2

+ O� b

R
�4

. �4�
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Papers by Falade and Brenner �10� and Higdon and Muldowney
�11� extend these results and provide correction terms for higher
a /R and b /R ratios. Ambari and co-workers �12� confirmed Hap-
pel and Brenner’s corrections experimentally using a falling-ball
apparatus with a magnetic ball whose position can be controlled
via an external magnetic field. Ilic et al. �13� and Graham et al.
�14� also confirmed these corrections in numerical simulations and
in physical experiments.

The intent of this paper is to combine theoretical analysis with
numerical simulations and laboratory experiments to study the
sources that affect the accuracy and reproducibility of falling-ball
tests in Newtonian fluids. In the following sections, a theoretical
analysis of accuracy and reproducibility in falling-ball tests is pre-
sented; then a series of numerical simulations and experiments
based on the theoretical analysis are described. Finally, conclu-
sions and recommendations to improve the falling-ball tests are
given based on these results.

2 Analysis of Accuracy and Reproducibility in Falling-
Ball Experiments

In falling-ball rheometry, the viscosity of a fluid is related to the
terminal settling velocity of a ball and is a function of the time of
flight, tf, the length of flight, Lf, the radius size of the ball, a, the
radius of the containing cylinder, R, the density of the ball, � f, the
mass of the ball, mf, the fluid, �l, the tilt of the containing cylin-
der, �, the distance from the ball center to the tube center, b, and
the local acceleration of gravity, g. Furthermore, the viscosity is a
function of the temperature of the fluid, T. In order to determine
the sensitivity of each of these measured quantities and the overall
possible accuracy of the falling ball technique, we have performed
an error analysis of the procedure. We start with the equation
mentioned above: In a Newtonian fluid, tf is related to the viscos-
ity of the fluid, �, by Stokes law �3�:

��tf,Lf,a,R,mf,�l,�,b,g� =
2

9

a2�dg�tf�
−1

Lf
, �5�

where � is the wall effects correction described in the previous
section. Expression for �d and g� are developed below. The den-
sity difference in terms of measured quantities can be written

�d =
mf

�4�/3�a3 − �l, �6�

The local acceleration of gravity depends on the latitude and
elevation and any local gravitational anomalies. For example,
there are no gravitational measurements in the USGS data base in
the immediate area of the laboratory at Texas Tech. The gravita-
tional “constant” averaged over six nearby stations �located within
a radius of about 21.5 km� is 979.309 24 cm/s2 with a standard
deviation of 0.004 59. This variation is small, but the difference
between this value and the appropriate value at a different location
could be more significant. We also want to take into account that
there is a possible change in the driving force due to the cylinder
tilt,

g� = g cos��� . �7�
To determine how uncertainties in the experimental parameters

affect the overall uncertainty in the calculated viscosity, a pertur-
bation analysis of Eq. �5� with respect to the independent vari-
ables is used to give

�� =
��

�tf
�tf +

��

�Lf
�Lf +

��

�a
�a +

��

�R
�R +

��

�mf
�mf +

��

��l
��l

+
��

��
�� +

��

�b
�b +

��

�g
�g . �8�

Each term of �� will now be evaluated. The partial derivatives
for tf and Lf are simply given by Eqs. �9� and �10�

��

�tf
=

2

9

a2�dg�

�Lf
=

�

tf
, �9�

��

�Lf
= −

2

9

a2�dg�tf

�Lf
2 = −

�

Lf
. �10�

Somewhat more complicated is the expression for the falling-
ball size because it not only appears directly in the equation but
also affects the � and �d terms. Here the expansion gives the result
as

��

�a
=

4

9

a�dg�tf

�Lf
2 +

2

9

a2g�tf

�Lf

��d

�a
−

2

9

a2g�tf

Lf

��−1

�a

= ��2

a
+

1

�d

��d

�a
+ �

��−1

�a
�

= ��2

a
−

3mf

�4�/3�a3�d

1

a
+ �

��−1

�a
� .

The expression ��−1 /�a can be evaluated by differentiating Eq.
�2� with respect to �, in terms of a dimensionless sphere size, �
=a /R, to give

��−1

�a
=

��−1

��

��

�a
=

�

a

��−1

��
, �11�

and

��−1

��
= − 2.104 43 + 6.266 31�2 − 4.7407�4 − 8.232�5 + 31 . �7

− 41.9�9. �12�
Two of the terms are evaluated numerically because the known

analytical solutions are not applicable for the relatively large size
falling ball used in our experiments. These are the terms that deal
with how the ball falls off-axis but parallel to the axis of the tube
and how the ball falls when the cylinder is tilted. For the first term
we find that

��

�b/R
= − 0.178

b

R
� , �13�

and for the second term we find that

��

��
= �1.32� − tan����� . �14�

The first part of Eq. �14� arises because, if the tube is tilted, the
ball will drift off-axis which changes the wall effect �. The second
part arises because of the reduced gravity along the axis of the
tube as given by Eq. �7�.

In a similar fashion, the rest of the terms can be evaluated. The
results are Eqs. �15�–�20�:

��

�R
= ��

��−1

�R
, �15�

��

�b
= −

�

�

��

�b
, �16�

��−1

�R
=

��−1

��

��

�R
= −

�

R

��−1

��
, �17�

��

�mf
=

�

�d

��d

�mf
=

�

�4�/3�a3�d
=

�

mf − �4�/3�a3� f
, �18�

��

��l
=

�

�d

��d

��l
= −

�

�d
, �19�
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��

�g
=

�

g�

�g�

�g
=

�

g
. �20�

Combining terms and substituting back into Eq. �8� gives the
results below,

��

�
=

�tf

tf
−

�Lf

Lf
+ �2 −

3� f

�d
+ ��

��−1

��
��a

a
− ��

��−1

��

�R

R

+
� f

�d

�mf

mf
−

��l

�d
− tan����� −

��

�b

�b

�
+

�g

g
. �21�

For most liquids, the following behavior is observed for viscos-
ity as a function of temperature,

��T� = 	e
/T, �22�

where T is the temperature in Kelvin, and 	 and 
 are experimen-
tally determined parameters. The uncertainty associated with tem-
perature can be described by ��� /�T��T. This yields the follow-
ing expression for the partial derivative:

��

�T
= −




T2� . �23�

Therefore, the magnitude of relative error in calculating the
viscosity can be bounded by estimating the magnitude of each of
the terms in Eqs. �21� and �23�. In the following section, numeri-
cal simulations and experiments are designed to evaluate each
individual term in these equations.

3 Numerical Simulations and Falling-Ball Experi-
ments

3.1 Numerical Methods. Boundary element method �BEM�
simulations are used in this study to model the flow of neutrally
buoyant suspensions of uniform spheres in Newtonian fluids. A
basic feature of the method is that the object needs to be dis-
cretized into elements only along the boundaries. These are line

contours for a two-dimensional flows and the containing surfaces
for three-dimensional flows. The basic governing equations of the
problem are solved for the whole domain but written in a manner
that the unknowns involved are the values of the parameters �such
as velocity, traction� at nodes located on the boundary only. Be-
cause no nodes exist in the interior of the object, the unknowns of
the problem are reduced significantly. This reduction decreases the
number of equations that must be solved. However, the resulting
matrix is fully dense. Having determined the nodal parameters on
the boundary, the governing equations can be used again to derive
simple algebraic relations to obtain values at the interior points
with reference to parameters along the boundary nodes. A detailed
description of the BEM can be found elsewhere �15,16�.

The three-dimensional boundary element mesh of the spherical
ball and the tube is shown in Fig. 1. There are 120 and 3200
elements on the ball and the surface of the tube, respectively.
No-slip boundary conditions are implemented on the surfaces of
the tube and the falling ball, that is u=0, v=0, and w=0 are set on
the surfaces of the tube �including the hemispheric bottom end�

Fig. 1 A three-dimensional BEM mesh of a spherical ball in a
tube. Note the vertical wall mesh has been cut in half in order to
view the ball clearly.

Fig. 2 Falling balls reach terminal velocity in Newtonian fluids
when the gap between the falling ball and the ends of the tube
is greater than the tube radius. Here H is the gap between the
falling ball and the surfaces of the fluid, and vt is the terminal
velocity. Included are data from Tanner †17‡ and Graham †14‡.

Fig. 3 The falling-ball velocity, v, of the ball when falling off-
center normalized by the velocity of the ball falling along the
centerline, vc, as a function of the dimensionless eccentricity.
Note a /R=0.1 in this figure.
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and the falling ball, where u, v, and w are the velocity components
in the x, y, and z directions, respectively. However, on the top
surface of the tube, free surface boundary conditions are set, that
is, tx=0, ty =0, and w=0 on the top surface of the tube, where
tx and ty are the traction components in the x and y directions,
respectively.

3.2 Experimental Methods. It was shown in previous work
that the larger the a /R ratio in the falling-ball geometry, the more
susceptible to error and less reproducible are the experiments �14�.
The intent of these experiments was to quantify these errors and
reproducibility. We also wished to establish baseline data for the
falling-ball tests and to produce a guideline for performing the
falling-ball experiments in geometries that are the least sensitive
to experimental error and with the most reproducibility.

The settling balls, obtained from Salem Specialty Ball Co., Inc.
�West Simsbury, CT�, were made of Anti-Friction Bearing Manu-

facturer’s Association �AFMBA� grade 200 brass �specific gravity
8.5� with a tolerance of ±0.005 mm in sphericity and 0.025 mm in
diameter. The cylinders were either custom built from plastic tube
to achieve the desired length-to-diameter ratio or commercially
available glass cylinders when the aspect ratio was appropriate.
The cylinders ranged in length from 216 to 1707 mm. The inside
diameter of the cylinders was measured using a Mitutoyo Abso-
lute Digimatic micrometer with a tolerance of ±0.03 mm. Timing
marks were evenly placed on the cylinder wall all the way from
the top of the cylinder to the bottom. The settling spheres were
timed with stop watches with a tolerance ±0.01 s for the fluids
that were transparent through measured zones in the cylinder. The
velocity of the settling balls was determined by measuring time
and distance between marks as the balls settled toward the bottom
of the cylinder. The beginning of the measurement zone was at
least one cylinder diameter from the top fluid level in the cylinder,
and ended as the settling ball hit the bottom. Lids were machined
to fit the cylinders and holes were drilled at measured positions in
order to insure the ball drop started along known positions of the
containing cylinder.

The test fluid was UCON oil HB-90,000 a polyethylene glycol
from Union Carbide Corp. A series of dynamic and oscillatory
rheometry experiments were used to determine that, under the
testing conditions, there were no shear thinning or measurable
normal stress differences. Experiments were performed in an Ub-
belohde viscometer tube �Cannon Instrument Co., State College,
PA� to determine the viscosity of the test fluid �49.4 Pa·s at
25°C�. These capillary viscometer results are accurate to within
�1% according to the manufacturer. At 25°C, UCON has a spe-
cific gravity of 1.0833 as determined by using a Mettler-Toledo
Density Meter. In our falling-ball tests, the temperature was care-
fully controlled in these experiments to ±0.1°C. This is equivalent
to a change in viscosity of the test fluid of 0.22 Pa·s. Fresh balls
were characterized, weighed, and thermally equilibrated before
each drop.

4 Results and Discussion

4.1 End Effect Study. A series of fully three-dimensional
transient calculations was performed using the mesh and boundary
conditions already described. In these simulations, the sphere was
started just beneath the surface of the liquid from rest and allowed
to settle to the bottom of the tube. The results of the study are
shown in Fig. 2. The simulation and experimental observations
showed excellent agreement. The predicted end-effect zone was

Fig. 4 Maximum increased falling-ball velocity as a function of
the ratio of ball radius, a, to tube radius, R. Here vmax is the
maximum falling-ball velocity for different sized balls when fall-
ing off-center.

Fig. 5 Numerically simulated vertical settling velocity of the
falling ball plotted against the distance between the center of
the falling ball to the top surface of the fluid, Z, for the specific
cases when the tube is tilted at 3° and a /R=0.3. Data are shown
for the measurement zone chosen as 4R from the top surface
and 3.5R from the bottom of the cylinder.

Fig. 6 Numerically simulated normalized time for the falling
ball to pass through the timing zone chosen as 5R from the top
surface and 4R from the bottom of the cylinder plotted against
the tilt angle of the tube. Results are for a /R=0.3.
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less than one cylinder radius up from the bottom and down from
the top. The falling-ball reaches its terminal velocity approxi-
mately one tube radius from its starting point. As shown in Fig. 2,
the velocity profile normalized by the steady-state velocity is to a
first approximation only a function of the gap distance between
the ball surface and the cylinder bottom. These numerical experi-
ments established that in pure Newtonian fluids the settling-ball
size has little effect on the length of the end-effect zone. The
results are in good agreement with Tanner’s analysis �17� and
Graham’s predication �14�.

4.2 Off-Center Effect Study. In these simulations, the veloc-
ity for a falling sphere as a function of the distance from the
centerline axis of the containing cylinder was determined away
from the cylinder ends to minimize the end effects. The results of
the study are shown in Figs. 3 and 4. Here the radial distance from
the axis of the tube, b, is normalized with the radius of the con-
taining tube, R.

Shown in Fig. 3 is the velocity of the falling ball normalized
with the centerline velocity as a function of b /R. Though it cannot
be seen due to the scale, as b /R increases that the velocity first
increases slightly ��0.5% �. This is due to less drag force posed
upon the falling ball by the cylinder wall �9�. The velocity in the
falling-ball test goes through a maximum as the ball starts further
and further off-center. The velocity then decreases as drag forces
start to increase when the trajectory brings the ball very close to

the wall. It is shown in Fig. 4 that the maximum falling-ball ve-
locity associated with an eccentric trial increases dramatically as
the ratio a /R increases.

4.3 Nonvertical Tube Effect Study. If the cylinder is not
perfectly vertical, the problem becomes more complicated. The
actual falling length is shorter than the distance between the tim-
ing marks due to the tilt of the tube. Less time is required to fall
between timing marks, giving an apparent velocity greater than
that experienced with a vertical tube. Also, the ball inevitably falls
off-center due to the tilt of the tube causing the forces on the
falling ball to be different from those of a vertical tube. The fall-
ing velocity is different from what is experienced for on-center
trajectories. There is no theory available for this tilt effect, though
one could envision asymmetric wall effects and differing drag
forces altering the forces on the falling ball, and, hence, the ve-
locities. A transient BEM code was used to calculate the time
required for the ball to pass between marks in the nonvertical tube
geometry.

In these simulations, the tube is tilted at a small angle, �, and
initially the ball is on the axis of the tube. Numerical results for
the case when the tube is tilted at 3° are presented in Fig. 5, where
the apparent vertical settling velocity is plotted against the dis-
tance from the bottom of the tube. Note l /R=15 and a /R=0.3,
where l is the tube length. When the tube is tilted, it is seen that
the falling ball’s apparent vertical settling velocity increases by

Table 1 Contributions of each independent variable to the overall error in the accuracy in estimating the viscosity of UCON
90,000

Variable Nominal value Uncertainty Formula % error % of total error

a 3.96 mm 0.01 �2 −
3� f

�d
+ ��

��−1

��
��a

a 0.75 20.3

� 0° 1 tan����� 0.69 18.6

tf 57 s 0.3
�tf

tf
0.52 14.1

T 25°C 0.1

�T

T2 0.46 12.4

R 11 mm 0.03 ��
��−1

��

�R

R 0.42 11.4

Lf 25 mm 0.1
�Lf

Lf
0.40 10.8

b 0 mm 0.1
��

�b

�b

� 0.26 7.0

mf 0.26 g 0.0003
� f

�d

�mf

mf
0.13 3.5

g 980 cm/s2 0.1
�g

g 0.01 0.0

�l 1.0833 g/cm3 0.001
��l

�d
0.01 0.0

Total 3.7
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about 4% and then begins to decrease as it gets closer to the
cylinder walls. This effect is the sum of the shorter traveling dis-
tance and the varying drag effect caused by the wall.

Figure 6 shows the numerically simulated normalized falling
time for the ball to pass through the timing zone plotted against
the tilt angle of the tube. Based on the typical experimental mea-
surement, the timing zone is chosen to be five tube radii from the
top surface and four tube radii from the bottom surface. It is seen
that a small angle of tilt ��5° � of the tube will create a maximum
of about 7% decrease in the settling time of the falling ball �at
about 3°�. When the tilt angle is within 1°, there is only a marginal
decrease of the time of flight of the falling ball ��2% �.

4.4 Reproducibility and Error Analysis. The magnitude of
relative error in calculating the viscosity can be bounded by esti-
mating the magnitude of each of the terms in Eqs. �21� and �23�.
Based on experiments and numerical simulations, we give an ex-
ample on how to use Eqs. �21� and �23� to analyze data. The
results of the analysis are shown in Table 1.

Table 1 shows that the largest errors in accuracy for these ex-
periments as measured by percent of the total error were ball size,
tilt degree, and measured time. The timing error is mostly due to
human error which is about ±0.3 s for an average technician in
our experiments. These experiments used a set of falling balls in a
series of different tubes. Several of the factors, such as the tilt
degree and measured time, can be improved by using a careful
and skilled technician. Other random fluctuations, such as ball
size and fall distance, can be improved by using the same ball and
tube for all experiments, if practical. As shown in Fig. 7, random
fluctuations can be reduced by correcting for variations in the
apparatus geometry and converting the falling times to viscosities.

The reproducibility of the viscosity estimate is independent of
the accuracy. Shown in Table 2 is the relative contribution of the
variables in determining the reproducibility of the viscosity esti-
mates. Many of the same important factors as described above in
the accuracy analysis are involved, but the relative weighting is
different. Note this analysis is based on taking a single falling-ball

test to estimate the properties of a Newtonian fluid with a well-
characterized viscosity. A single test gives an estimate of the vis-
cosity, but there is no information about the quality of the
measurement.

Figure 7 shows the number of experiments is a major factor in
determining the reproducibility of a set of experiments. For two
tests, the 95% confidence limits on the mean are more than ±20%.
However, the 95% confidence limits reduce to ±3% –5% for five
trials. This reduction in the uncertainty emphasizes how important
multiple falling-ball tests are in obtaining high accuracy results.
Note the difference between falling-ball test results averaged over
five trials and the measurements of Ubbelohde viscometer tube is
less than 5%.

5 Conclusions
In this paper, a combination of theoretical analysis, experi-

ments, and numerical simulations was used to study falling-ball
viscometers in Newtonian fluids. The sources that affect the accu-
racy and reproducibility of these tests were identified. Based on
these studies, the following recommendations are presented in or-
der to obtain high precision results.

Use falling balls that are very consistent in size, sphericity, and
surface finish. Higher AFMBA grade balls provide more consis-
tent results. Choose a falling ball and cylinder to get a small a /R
ratio �a /R�0.1� which will reduce off-center error dramatically.
Make sure that the apparatus is vertical and the ball falls on axis.
Multiple trials improve reproducibility and reduce uncertainty in
the measurement. Use the material properties such as viscosity
rather than the falling time to account for minor variations
in falling ball apparatus. Improve the accuracy of the time
measurement.
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Surfactant Use for Slug Flow
Pattern Suppression and New
Flow Pattern Types
in a Horizontal Pipe
A set of experiments was performed to study flow pattern suppression in horizontal
air-water pipe flow by means of surfactant additive. Results suggest that addition of the
surfactant to the gas-liquid flow significantly reduces the occurrence of slug flow. In
addition, previously unreported flow patterns were observed to exist between slug and
dispersed bubble flows. It is concluded that new mechanisms for slug flow transition need
to be considered. �DOI: 10.1115/1.2062747�

Introduction
Drag reduction and flow pattern suppression are important to

the increase of oil and gas production rates and to reduce recovery
and transportation costs. Drag reducing agents �DRA� have been
investigated for industrial and military applications since the dis-
covery of Toms �1�. In addition to drag reduction, researchers
have indicated that in gas-liquid flow DRA can reduce the range
of conditions for which some flow patterns occur �2,3�. Of par-
ticular importance is the reduction or elimination of slug flow
occurrence. In slug flow gas forces slugs of liquid to completely
fill the pipe diameter, accelerate to the gas velocity, and dramati-
cally increase pressure drop.

Clearly the most through work in the DRA area has been the
study of polymer-based DRA for single-phase drag reduction.
Two critical issues exist with polymer DRAs in terms of hydro-
carbon transport; dry out and shear degradation. Polymer DRA
requires a co-solvent. In the presence of a gas the co-solvents have
a tendency to dry out, causing precipitation of the DRA. Shear
degradation is a phenomenon that has been well documented. Un-
der high shear conditions �e.g., a pumping station�, long polymer
DRAs chains are permanently broken, thus reducing or eliminat-
ing the drag reduction capabilities of the DRA. It is common
practice to reinject the DRA downstream of pumping stations.

These critical issues could be eliminated with the use of surfac-
tant drag reducing agents �SDRA�. Surfactants are soluble in most
liquid phases and therefore do not require a co-solvent and are
thus not subject to dry out. Surfactants go to the liquid surface and
act to reduce the surface tension. Above the critical micelle con-
centration �CMC� additional surfactant molecules no longer mi-
grate to the interface and they begin to form micelle structures in
the liquid. It has been proposed that in single-phase flow, surfac-
tant drag reduction occurs if the micelle structures formed are
rodlike �4�. The benefit of these self-assembling structures is that
they break apart when subjected to conditions of high shear but
then reassemble through fast self-assembly kinetics downstream.
This is an additional benefit over a polymer DRA in that it does
not need to be re-injected following a high-shear condition �i.e., it
reassembles�.

Limited work has been reported in the area of SDRA in multi-
phase flow �2�. It has been shown that drag reduction can occur in
stratified gas-liquid flow with low concentrations of surfactant
�i.e., low enough not to form drag reducing micelles� �5�. Glass-

meyer �6� proposed that this is due to the reduction of interfacial
stress and modification of interfacial wave structures. Waters and
Grotberg �7� studied the motion of surfactant laden liquid plugs in
airways. While their models are not of a scale to directly apply to
multiphase transport lines �e.g., capillary effects were significant
at their scale�, they did make two pertinent observations to the
present work. As the surfactant concentration was increased there
was an increase in the elasticity parameter �related to the Ma-
rangoni number� and subsequently an increase in pressure drop
across a liquid plug. The increase of surfactant concentration also
decreased the pressure drop required for the liquid plug to burst.
Thus, increasing the surfactant concentration leads to a decrease
in the stability of the liquid plug.

In multiphase flow numerous mechanisms are available to re-
duce pressure loss, including: bulk �single phase� mechanisms,
wall roughness reduction, reduction of interfacial shear stress, re-
duction of effective density �vertical flow�, change in liquid
holdup, change in flow pattern. Proper micelle formation is nec-
essary for the bulk mechanism of surfactant drag reduction to
occur, as described previously, and has a primary affect in reduc-
ing the drag between the liquid and the wall. Wall roughness
reduction can be effective in gas or liquid flow in terms of drag
between the fluid and the wall. In gas-liquid flow there is an
interfacial roughness that can be affected by surfactants.

Surfactants have been shown to reduce the occurrence of slug
flow �5�. While a general literature review of flow patterns is not
in the scope of this work, the change in flow pattern and newly
formed flow patterns due to the addition of surfactant are ad-
dressed here due to their potential to reduce pressure losses.
Therefore it is important to first review the commonly reported
gas-liquid pipe flow patterns for horizontal flow �Fig. 1�.

Consider concurrent air/water flow in a horizontal pipe. At low
gas and liquid velocities the two phases flow separately, segre-
gated by gravity, with a smooth interface. This flow is termed
stratified smooth �Fig. 1�a��. With increasing gas velocity and low
liquid velocity the interface becomes wavy. This flow is termed
stratified wavy �Fig. 1�b��. At low gas and moderate liquid veloc-
ity the liquid fills the pipe while the gas forms pockets that gently
sweep liquid away from the upper section of the pipe in full pipe
regions. This flow is termed plug flow �Fig. 1�c��. As the gas
velocity increases from plug flow, the liquid filled region develops
rotation in the leading section, entraining air bubbles and passing
them through the body of the liquid. This type of flow is termed
slug flow �Fig. 1�d��. Slug flow is of great interest in the present
work. In addition to enhanced pressure drop, slug flow creates
tremendous forces at pipe beds and enhanced corrosion rates.

Four additional commonly reported flow types exist for the air/
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water system. These include pseudo-slug �Fig. 1�e��, annular �Fig.
1�f��, dispersed bubble �Fig. 1�g��, and mist �Fig. 1�h��. Pseu-
doslug flow is similar to slug flow but allows gas to pass through
the slugs from the tail section. The liquid does not form a com-
petent bridge and the slug travels at a lower velocity than in true
slug flow. Annular flow occurs at very high gas velocities and is
observed as a central gas core with wetted walls �due to wave
spreading and droplet deposition�. Dispersed bubble flow occurs
at very high liquid flow rates. The liquid forms a continuous com-
petent bridge across the pipe while the gas moves through the
liquid bulk in small bubbles due to the high level of turbulence.
Mist flow occurs at very high gas and low liquid velocities. The
gas fills the pipe while the liquid is fully entrained in the turbulent
gas flow.

Often the intermittent flow patterns �plug, slug, pseudoslug� are

lumped together and termed intermittent. It is necessary in this
work to be more specific.

Methodology
Experiments were arranged to study the effects of surfactant

concentration and surface tension on gas-liquid flow pattern. A
horizontal multiphase flow loop �Fig. 2� was used for the evalua-
tion of the flow patterns. A predetermined liquid composition was
charged into a 200-gal�0.76 m3� storage/separation tank. The liq-
uid was pumped with a 3-hp�2.2 kW� centrifugal pump through a
flow metering section to the inlet of the multiphase pipe. Air was
supplied at 100 psi�0.79 MPa�. It also flowed through a metering
section to the multiphase pipe inlet.

The multiphase flow occurred in a 2-in Sch. 40 �0.052 m-id�
clear PVC pipe. For clarity, all locations in the piping system are
listed by their length to diameter �L /D� ratio. The storage/
separation tank was located at L /D=300. The flow patterns were
visually determined at L /D=275. In addition flow patterns were
videotaped at L /D=250.

After the multiphase flow entered the separator, the air was
vented to the atmosphere. The pressure in the test section is effec-
tively atmospheric ��1 psig�. The temperature of the fluid in the
test section ranged from 30 to 40°C. This range is not expected to
have a significant impact on the flow patterns observed.

Both hard water, 10 grains per gallon �gpg� municipal supply,
and soft water, 0 gpg deionized, were available for experimenta-
tion. Two surfactants were used in this study: sodium dodecyl
sulfate �SDS� and linear alkyl benzene sulphonate �LAS�.

Instrumentation details for this system have been reported else-
where �6�.

Results/Discussion
Several new flow patterns were observed that have been previ-

ously unreported to the authors’ knowledge. A sketch summary of
the new flow patterns is shown in Fig. 3.

Stratified Wavy With Bubbles [Fig. 3(a)]. This flow pattern is
similar to stratified wavy �Fig. 2� but with bubbles on the gas-
liquid interface. These bubbles are not present in sufficient quan-
tity to cover the entire interface and suppress waves as in stratified
gas-bubble-liquid flow �discussed later�.

Intermittent Bubble Top Plug [Fig. 3(b)]. This flow pattern is
like plug flow; however the plug cannot reach the top of the pipe
due to a layer of bubbles.

Intermittent Bubble Top Slug [Fig. 3(c)]. Like intermittent
bubble top plug flow, the liquid in a bubble top slug does not

Fig. 1 Common gas-liquid horizontal flow patterns: „a… strati-
fied smooth, „b… stratified wavy, „c… intermittent plug, „d… inter-
mittent slug, „e… pseudoslug, „f… annular, „g… dispersed bubble,
„h… mist.

Fig. 2 University of Dayton multiphase flow loop
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reach the top of the pipe due to a layer of bubbles. This is similar
to pseudo-slug observations �Fig. 2� but with a layer of bubbles on
top of the slugs as opposed to a gas pocket.

Stratified Bubble-Liquid [Fig. 3(d)]. This flow pattern can be
visualized as two-phase stratified flow where the lower phase is
liquid and the upper phase is a layer of gas bubbles �like foam�.

Stratified Gas-Bubble-Liquid [Fig. 3(e)]. This flow pattern is

similar to stratified bubble-liquid but has three distinct regions.
The lower region is liquid, the middle is a layer of bubbles, and
the upper region is gas.

Intermittent Bubbly Slug [Fig. 3(f)]. This is a slug flow pat-
tern with gas passing along a film of bubbles and pushing slugs of
bubbles down the pipe.

For comparison to previous work a flow pattern map for air and
water was generated �Fig. 4�. The legend for Fig. 4 �and all flow
pattern maps� has been placed in Table 1. The results for air/water
flow without surfactant were deemed reasonable when compared
to the flow pattern map of Mandhane et al. �8�. The solid symbols
represent intermittent flow patterns. Four flow patterns were ob-
served for this range of conditions. All patterns fell largely within
their designated regions. The transition from stratified to intermit-
tent flow was found to occur at a superficial liquid velocity of
around 0.1 m/s. Intermittent flow was observed, and expected, to
occur well above a superficial liquid velocity of 1.0 m/s.

Figure 5 is a flow pattern map for air and deionized water
�0 gpg� with 220 ppm SDS. The surface tension of this liquid was
64 mN/m �dyn/cm�. In comparison to the air/water flow pattern
map �Fig. 4� there are 3 additional flow patterns: stratified bubble-
liquid, intermittent bubble top slug, pseudoslug.

Fig. 3 New flow patterns: „a… stratified wavy with bubbles, „b…
intermittent bubble top plug, „c… intermittent bubble top slug,
„d… stratified bubble-liquid, „e… stratified gas-bubble-liquid, „f…
intermittent bubbly slug

Fig. 4 Experimental flow pattern map for air/water „surface tension=72 mN/m…. Shaded lines
are the flow pattern map as observed in the literature †8‡. The data shows good agreement with
expected behavior.

Table 1 Legend for Figs. 4–8
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The new flow patterns occur largely in place of slug flow. At
high gas flow rates pseudoslug flow ensues. At high liquid flow
rates intermittent bubble top slug flow occurs. This is unique as
true slug flow is only observed to occur up to a superficial liquid
velocity of about 0.4 m/s. At low gas and high liquid flow rates
the plug flow is replaced with stratified bubble-liquid flow. No

change is apparent at low liquid flow rates; the transition from
stratified wavy/smooth to intermittent matches that of air/water
within the resolution of the data collected.

Figure 6 is a flow pattern map for air and deionized water with
1340 ppm SDS. The surface tension of this liquid was 48 mN/m.
This represents both an increase in surfactant concentration and a

Fig. 5 Flow pattern map for air/220 ppm SDS in 0 gpg water „surface tension=64 mN/m…. Note that the
intermittent slug pattern has been significantly suppressed in favor of intermittent bubbly slug pattern,
especially at high superficial velocities.

Fig. 6 Flow pattern map for air/1340 ppm SDS in 0 gpg water „surface tension=48 mN/m….
Note that the intermittent slug pattern has been almost completely suppressed in favor of
intermittent bubbly slug pattern.
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decrease in surface tension compared to the data presented in Fig.
5. By increasing the SDS concentration, 2 new flow patterns are
observed �stratified gas-bubble-liquid and dispersed bubble� and 2
flow patterns are eliminated �plug and pseudoslug�.

The range of conditions for slug flow existence is further de-
creased �i.e., only up to a superficial liquid velocity of about
0.2 m/s�. For high liquid and gas flow rates, slug flow is replaced
by stratified gas-bubble-liquid flow. A large region of the slug flow
is replaced with intermittent bubble top slug flow. Plug flow is
replaced by stratified wavy and stratified bubble-liquid flow. Little
changes at the transition from stratified wavy/smooth to intermit-
tent flow.

The observation of dispersed bubble flow occurs at the highest
gas and liquid flow rates. The actual flow pattern was nearly in-
distinguishable between dispersed bubble and annular flow. A bet-
ter technique for distinguishing these two flow patterns in surfac-
tant flow is needed. It is also recommended that further data be
collected at higher flow rates to determine whether the flow pat-
tern transition was shifting significantly.

The increase of SDS in going from the conditions in Fig. 5 to
the conditions in Fig. 6 represents an increase in concentration
and a decrease in surface tension. The single-phase liquid proper-
ties did not change significantly �i.e., viscosity, density, shear
stress �5��.

To isolate the effect of surface tension from surfactant concen-
tration, a flow pattern map for air with 1140 ppm SDS in tap
water �10 gpg� was created �Fig. 7�. The surface tension of this
liquid was 30 mN/m. For these conditions true slug flow was
eliminated. Two new flow patterns �stratified wavy with bubbles
and intermittent bubble top plug flow� were observed and the
dispersed bubble flow pattern disappeared. Despite the lack of
slug flow, the flow pattern map is still dominated by intermittent
flow. However, intermittent flow has yielded more conditions to
stratified flows at high liquid flow rates. The transition from strati-
fied wavy/smooth to intermittent flow does not significantly
change.

These conditions represented a further decrease in surface ten-
sion while decreasing the surfactant concentration. Thus it might

be concluded that the surface tension is a driving factor in the
suppression of slug flow. This would counter field observations of
slug flow in oil and gas transport.

To further investigate the surface tension hypothesis a flow pat-
tern map for air with 1375 ppm LAS in tap water �10 gpg� was
created �Fig. 8�. The surface tension of this liquid was 30 mN/m.
This map is more like that of Fig. 6 �48 mN/m� than that of Fig.
7 �30 mN/m� indicating that surface tension is not the only miss-
ing factor in flow pattern determination �slug flow is observed up
to about 0.3 m/s/superficial liquid velocity�. The only additional
flow pattern observed in Fig. 8 from Fig. 6 is intermittent bubbly
slug flow at one condition of high gas and liquid flow rate. Figure
8 does appear to have more stratified gas-bubble and gas-bubble-
liquid conditions than observed in Fig. 6. This is similar to what
was observed in Fig. 7. As with all of the flow pattern maps, the
transition from stratified wavy/smooth to intermittent does not ap-
pear to have changed significantly whereas the slug flow region
appears to be disappearing from the top �i.e., at higher superficial
liquid velocities�.

It should be noted that SDS and LAS do not have the same
molecular weight �the molar concentrations of surfactant in Fig. 6
and Fig. 8 are not similar�. The molecular weight of SDS is 288
and the molecular weight of LAS is 348.

Conclusions
In addition to the summary of new flow patterns, several con-

clusions can be drawn from the multiphase flow observations. For
a given surfactant system a decrease in surface tension causes a
decrease in slug flow occurrence. The slug flow regime is largely
replaced by a new stratified flow pattern at high liquid flow rates.
These stratified flows have a layer of bubbles that appear to
dampen wave growth and stabilize the interface. For such condi-
tions, low gas rates yield bubble-liquid stratified flow and high gas
rates yield gas-bubble-liquid stratified flow.

Surface tension had little affect on the stratified wavy/smooth to
intermittent flow transition. This is most intriguing as many pro-
posed mechanisms suggest wave instability as the mechanism for

Fig. 7 Flow pattern map for air/1140 ppm SDS in 10 gpg water „surface tension
=30 mN/m…. Note that the intermittent slug flow pattern has been totally suppressed. Com-
paring this to Fig. 6 shows that surfactant addition is even more effective in suppression of
slug flow pattern when the water is hard than when the water is deionized.
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slug formation from stratified flow. This does not preclude the
reduction of slug flow at low liquid velocities. Rather, it is inter-
esting to see it have a much greater affect at higher liquid veloci-
ties and to see the presence of new flow pattern types.

Surface tension is not the lone driving factor for slug flow sup-
pression. It appears to be related to the tendency to foam. It is
clear that the mechanisms for this phenomenon need to be identi-
fied to enhance the general understanding of gas-liquid flow.

No surface tension effect was observed for the annular or dis-
persed bubble transitions for the range of flow rates investigated.
Using common mechanistic models for horizontal flow �9�, none
were expected.
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Relaxation Effects in Small
Critical Nozzles
We computed the flow of four gases (He, N2, CO2, and SF6) through a critical flow
venturi (CFV) by augmenting traditional computational fluid dynamics (CFD) with a rate
equation that accounts for �relax, a species-dependent relaxation time that characterizes
the equilibration of the vibrational degrees of freedom with the translational and rota-
tional degrees of freedom. Conventional CFD (�relax=0) underpredicts the flow through
small CFVs (throat diameter d=0.593 mm) by up to 2.3% for CO2 and by up to 1.2% for
SF6. When we used values of �relax from the acoustics literature, the augmented CFD
underpredicted the flow for SF6 by only 0.3%, in the worst case. The augmented predic-
tions for CO2 were within the scatter of previously published experimental data (±0.1%).
As expected, both conventional and augmented CFD agree with experiments for He and
N2. Thus, augmented CFD enables one to calibrate a small CFV with one gas (e.g., N2)
and to use these results as a flow standard with other gases (e.g., CO2) for which reliable
values of �relax and the relaxing heat capacity are available. �DOI: 10.1115/1.2137346�

1 Introduction
Critical flow ventruis �CFVs�, also called critical nozzles, have

been used for decades as secondary standards for measuring large
gas flows because they are passive, extraordinarily stable, and
easy to use �1,2�. In an effort to exploit these desirable qualities at
the lower flow ranges encountered in semiconductor processing
�10 to 300 standard1 cm3 s−1�, we used computational fluid dy-
namics �CFD� to predict the flow through a small, well-
characterized CFV �nominal throat diameter d=0.593 mm�.2 In
Fig. 1, we compare our CFD results with previously published
measurements for four gases �3�. The variables used for this com-
parison are those conventionally used to describe CFVs. Thus, the
ordinate is the discharge coefficient Cd� ṁ / ṁi, where ṁ is actual
mass flow and ṁi is the mass flow calculated using an idealized
one-dimensional, inviscid model. The abscissa is the inverse
square root of the Reynolds number: Re=4ṁi /�d�o where �o is
the viscosity evaluated upstream of the CFV at stagnation condi-
tions. As shown in Fig. 1, the present CFD model predicts the
mass flow through the small CFV for all four gases to within
±0.31% for flow rates spanning at least a factor of 4 for each gas.
Previously existing CFD models and analytical predictions �4–11�
account for several species-dependent effects �virial coefficients
and temperature-dependent heat capacity� and for boundary layers
and curvature of the sonic line. In order to obtain good agreement
with the measurements for CO2 and SF6, we had to augment
existing equilibrium CFD models to account for �relax, the species-
dependent relaxation time that characterizes the equilibration of
the vibrational degrees of freedom with the translational and ro-
tational degrees of freedom. The relaxation time must be com-
pared to �transit, the average time required for a fluid element of
fixed mass to move from the CFV inlet to the CFV throat. For any
ISO standardized CFV geometry �12� �Fig. 2�, the approximate
transit time is �transit�10d /c where d is the diameter of the throat
and c is the speed of sound in the gas at the CFV throat. Thus,
small CFVs, such as the one considered here for use at low flow
rates, have short transit times and can encounter larger values of
the ratio �=�relax/�transit. Conventional CFD and analytical theo-

ries for CFVs assume �relax=0. Such theories agree with the
present results for N2 and He within their scatter �0.1%, root mean
square�; however, as shown in the lower panel of Fig. 1, conven-
tional theories ��relax=0� underpredict the flow through this small
CFV by up to 2.3% for CO2 and up to 1.2% for SF6. The aug-
mented CFD model provides better understanding of how gas spe-
cies effects influence the discharge coefficient for both CO2 and
SF6 in small CFVs. The results help to quantify the level of cor-
rection needed when a CFV is calibrated using a standard
gas �e.g., N2 or air, Ar, etc.� where �relax=0, but applied to other
gases �e.g., CO2 or SF6� where vibrational relaxation effects are
prevalent.

Our CFD model characterizes the vibrational degrees of free-
dom within each fluid element by its energy �vib�Tvib�, where Tvib
is the vibrational temperature. As the gas flows through the CFV,
the temperature of the external modes, Text, drops quickly while
Tvib lags behind for molecules where � is close to or greater than
unity. �Here, we follow Bhatia �13� who called the translational
and rotational degrees of freedom “external modes.”� To account
for the lag, our CFD model couples the Navier-Stokes equations
to a local relaxation equation that contains two species-dependent
parameters. One is �vib�Tvib� which is obtained from spectroscopy
�13,14� and the second is �relax which is obtained from ultrasonic
absorption and dispersion data �15,16�. The CFD flow field is
determined by solving the coupled equations simultaneously.

Our results show that relaxation effects must be considered
whenever small CFVs are used for slowly relaxing gases over
temperatures ranges for which the vibrational states are signifi-
cantly populated. Both CO2 and SF6 meet these conditions; how-
ever, N2 does not because, at ambient temperature, nearly all N2
molecules are in their lowest vibrational state.

2 CFV Geometry and Principle of Operation

2.1 CFV Geometry. Figure 2 shows the contour of an ISO
toroidal throat CFV that was used in this study. It consists of a
circular arc of radius Rc=2d that merges smoothly into a conical
section with a vertex half-angle of �=3°.

2.2 Baseline Mass Flow Model. For any CFV, the ratio of the
downstream pressure to upstream pressure is maintained so that
the gas velocity near the CFV throat reaches sonic velocity. This
condition is commonly referred to as choking the CFV. The larg-
est pressure ratio that just chokes the CFV is called the choking
pressure ratio, and CFVs must be operated at or below this thresh-

1Standard reference conditions are at 293.15 K and 101.325 kPa.
2The measured value of the throat diameter was adjusted by less than one micron

by matching the experimental Cd data to the computed results for N2.
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old. For choked conditions, a long standing baseline mass flow
model has been developed that is capable of predicting the actual
mass flow to within 10% or better, depending on Reynolds num-
ber. This model is based on the following three assumptions: �1�
the flow field is one-dimensional, �2� the flow field is inviscid, and
�3� the gas behaves ideally and has constant heat capacities.
Herein, these assumptions are collectively called the baseline
CFV assumption. Several engineering texts �17–19� use this as-
sumption to derive a baseline mass flow

ṁi =
PoA*Cs

i

�RTo

�1�

where Po is the upstream stagnation pressure, To is the upstream
stagnation temperature, A*=�d2 /4 is the CFV throat area, R is the
gas constant for a given species �the universal gas constant di-
vided by the molecular weight�, and Cs

i is the ideal critical flow
function

Cs
i = ���� + 1

2
	�1+�/2�1−���

�2�

where the superscript “i” is added to denote the gas is ideal and
�=CP /CV is the ratio of the constant-pressure specific heat to the
constant-volume specific heat.

2.3 Experimental Calibration. In CFV applications, none of
the three assumptions used to derive the baseline mass flow are
perfectly satisfied, and consequently the actual CFV mass flow
does not equal ṁi. However, the baseline mass flow plays a vital
role in CFV calibrations, being used as the normalizing parameter
in the definition of the discharge coefficient

Cd �
ṁ

mi
=

ṁ�RTo

PoA*Cs
i �3�

where ṁ is the experimentally measured mass flow. Calibration
curves typically plot the discharge coefficient versus a function of
the Reynolds number

Re =
4ṁi

�d�o
�4�

where �o is the molecular viscosity evaluated at the stagnation
conditions.

The Cd values resulting from experimental calibration curves
are most reliable when they are applied using the same conditions
�i.e., gas species, stagnation conditions, ambient temperature, inlet
velocity profile, beta ratio, etc.� for which the CFV was calibrated.
This paper focuses on how species effects impact the discharge
coefficient when the calibration and application gas differ and one
or both of these gases experiences vibrational relaxation. It is
important to understand this phenomenon because this physical
mechanism is not captured by the standard Reynolds number pa-
rameterization. In a similar manner, species effects attributed to
real gas behavior �i.e., virial effects� also result in uncoupling
between the discharge coefficient and Reynolds number. While
the physical mechanisms differ, we introduce linear CFV theory
and use it to show that the methodology used to account for real
gas behavior can also be applied to correct for vibrational relax-
ation phenomenon.

In CFV flows, real gas behavior is taken into account by using
the real gas critical flow function, Cs

r, in the place of the ideal
critical flow function, Cs

i , in Eq. �3�. When real gas behavior is
accounted for in this way, the corresponding discharge coefficient
depends predominantly on Reynolds number.3 In a similar man-
ner, we introduce an effective critical flow function, Cs

eff, to correct
for vibrational relaxation effects. The effectiveness of this correc-
tion parameter, like the correction for real gas behavior, depends
on vibrational relaxation phenomena being uncoupled from the
other higher order effects �i.e., boundary layer development, the
shape of the sonic line, and virial effects�. Higher order CFV
models, which correct the baseline mass flow model, can be used
to justify the use of this correction factor.

2.4 Higher Order CFV Models. Higher order CFV models
improve upon the baseline mass flow model by eliminating the
three assumptions used to derive ṁi. These higher order models
are based on solutions of the Navier-Stokes equations that govern
the fluid dynamics of conventional CFV flows. Because of the
complexity of the Navier-Stokes equations, no analytical solutions
have been found when all three of the baseline CFV assumptions
are eliminated simultaneously. Instead, researchers have found
three different solutions by removing only one of the three base-
line CFV assumptions while enforcing the other two. These three
solutions include �1� a solution to account for the boundary layer

3Even after correcting for real gas behavior the discharge coefficient has a weak
dependence on � that diminishes with increasing Reynolds number.

Fig. 1 Comparison of experimental calibration data of four
gases with equilibrium „open symbols in „b…… and nonequilib-
rium CFD data „closed symbols… over a Reynolds number
range from 2000 to 40,000

Fig. 2 Critical nozzle used in this study. The diameter of the
throat was d=0.593 mm.
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development along the CFV wall �6–8�, �2� an inviscid axisym-
metric solution to account for the curvature of the sonic line at the
CFV throat �4�, and �3� a solution to account for real gas behavior
�20–24�. We briefly discuss each of these three solutions.

In the late 1960s and early 1970s both Tang �6,7� and Geropp
�8� independently developed models predicting how the discharge
coefficient is affected by boundary layer development along the
CFV wall. The viscous discharge coefficient developed by these
researchers

Cd1
= f1�Re,�,�� �5�

is denoted by the subscript “1” and is a function of the Reynolds
number, the specific heat ratio, and the CFV geometry which is
accounted for via the curvature parameter �=d /2rc where rc is
the throat radius of curvature.

The second model, developed by Hall in 1962, predicts the
effects of sonic line curvature on the discharge coefficient. Hall
eliminated the one-dimensional assumption by considering the
flow to be axisymmetric, but he retained the assumptions that the
fluid behaves as a perfect gas and the flow is inviscid. The axi-
symmetric inviscid discharge coefficient

Cd2
= f2��,�� �6�

is denoted by the subscript “2” and is a function of the specific
heat ratio and the curvature parameter. The third model was de-
veloped by Johnson �20–24� who included real gas behavior, but
assumed that the flow was inviscid and one-dimensional. This
solution requires an accurate thermodynamic database and is typi-
cally implemented numerically as described in Refs. �20–24�. For
convenience, Johnson expressed the numerically calculated mass
flow in the same format as the baseline model

ṁ3 =
PoA*Cs

r

�RTo

�7�

and lumped all of the real gas effects into the parameter Cs
r, which

replaces the ideal critical flow function. The real discharge coef-
ficient is denoted by the subscript “3” and is defined as the ratio of
ṁ3 and the baseline mass flow

Cd3
�

ṁ3

ṁi

=
Cs

r

Cs
i �8�

but by Eqs. �1� and �7� is also equal to the ratio of the real gas
critical flow function to the ideal critical flow function. The real
gas critical flow function, which is often called the Johnson coef-
ficient, is generally either tabulated as a function of Po and To or
given as a surface fit of these parameters for various gas species.

2.5 Linear CFV Theory. For simplicity, in this paper, the
three CFV models are referred to as models 1, 2, and 3, respec-
tively. Linear CFV theory is used to combine the individual results
of these three models into a single model capable of predicting the
discharge coefficient for a general CFV flow where none of the
baseline CFV assumptions apply. The results of the linear theory
�11� show that to second-order accuracy the discharge coefficient
equals

Cd = Cd1
Cd2

Cd3
�9�

the product of the Cd’s from models 1, 2, and 3, respectively. This
expression clearly shows how the discharge coefficient depends
on real gas behavior via Cd3

. This dependence can be eliminated
by dividing Eq. �9� by Cd3

, and modifying the discharge coeffi-
cient definition to be

Cd� � Cd/Cd3
= Cd1

Cd2
. �10�

Based on the functionality of Cd1
and Cd2

given in Eqs. �5� and �6�
the modified discharge coefficient is completely free of virial ef-
fects, being a function of Re, �, and �. Physically, Cd� is made

independent of real gas behavior by using ṁ3 as the normalizing
parameter

Cd� �
ṁ

ṁ3

=
ṁ�RTo

PoA*Cs
r , �11�

which is equivalent to using the real gas critical flow function in
place of the ideal critical flow function. Mathematically, Eq. �11�
is derived by substituting Eqs. �3� and �8� into Eq. �10�.

The definition of the discharge coefficient given in Eq. �11� is
preferred over the definition in Eq. �3� because the real gas be-
havior in Eq. �3� has the undesired quality of possibly permitting
the discharge coefficient to be greater than unity. That is, depend-
ing on the gas and CFV operating conditions, Cd3

could either be
greater than or less than unity. In cases where Cd3

	1, it could
cause the discharge coefficient in Eq. �3� to be greater than unity.
On the other hand, the definition in Eq. �11� is only dependent on
boundary layer effects and curvature of the sonic line as shown in
Eq. �10�. Both of these effects cause the discharge coefficient to
be less than unity. The boundary layer introduces a region of fluid
where both the density and velocity are reduced relative to the
core flow. The density is lower because of the higher temperatures
in the boundary layer attributed to viscous heating as the flow
stagnates at the CFV wall, and the fluid velocity is lower due to
the no-slip condition imposed by the wall. In the axisymmetric
core flow, the curvature of the sonic line stipulates that the Mach
number distribution across the CFV throat cross section is not
uniformly equal to unity, but has values both below and above this
value. Since compressible flow theory requires that the maximum
mass flux coincide with a unity mach number �17�, the predicted
mass flow will be lower than ṁi.

3 Methodology
In this section, we present the Navier-Stokes equations that are

solved in a conventional equilibrium CFD analysis �9�. We then
introduce the extensions required to account for molecular relax-
ation and we conclude with a description of the numerical algo-
rithms that we used.

3.1 Conventional CFD Equations. For Reynolds numbers
below 106, the axisymmetric, steady, compressible flow in a CFV
is governed by the laminar Navier-Stokes equations �9�. The large
favorable pressure gradient in the converging section of the CFV
is believed to relaminarize what would otherwise be a turbulent
flow �25�. Evidence that the flow is laminar is observed in myriads
of calibration data where, as predicted by laminar flow theory, the
discharge coefficient scales linearly with the inverse square root of
the Reynolds number �e.g., Fig. 1�.

In CFD, the four scalar conservation equations, including con-
tinuity, axial and radial momentum, and energy that constitute the
axisymmetric Navier-Stokes equations, are often combined into a
single vector equation as explained in Refs. �26,27�. In the present
numerical investigation the vector form of the Navier-Stokes
equations is expressed as



�Qv

�t
+

�E

�x
+

�F

�r
= H + ��Qv� �12�

where the time derivative is retained to facilitate a time marching
numerical procedure to the desired steady-state solution.4 This
vector representation of the Navier-Stokes equations is developed
by grouping the appropriate variables from the four scalar conser-
vation equations. In particular, those variables having like deriva-
tive operators are combined into vectors. For example, the time
derivative vector, Qc= �� ,�ux ,�ur ,e�T, consists of the temporal
terms from continuity, axial and radial momentum, and energy
equations where e=���+1/2�ux

2+ur
2�� is the sum of the internal

4The time marching approach differs from commonly used iterative approaches
which omit the time derivative term when applied to steady state problems.
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and kinetic energy per unit volume. In Eq. �12� the time derivative
is multiplied by the Jacobian matrix, 
=�Qc /�Qv, so that via the
chain rule of vector calculus �28�, Qc= �� ,�ux ,�ur ,e�T, is replaced
by Qv= �P ,ux ,ur ,T�T. This transformation to the dependent vec-
tor, Qv, conveniently allows thermodynamic properties to be
evaluated explicitly as a function of temperature and pressure in
the numerical procedure.

The remaining vectors, E and F, on the left-hand side of Eq.
�12� are determined in a manner analogously to Qc. These vectors,
commonly called the inviscid flux vectors, are defined as

E = 

�ux

�ux
2 + P

�uxur

�e + P�ux

�, F = 

�ur

�urux

�ur
2 + P

�e + P�ur

� �13�

and account for the convective terms in the mass, momentum, and
energy equations. On the right-hand side of Eq. �12�, the viscous
operator, �, is defined by

� =
�

�x
�Rxx −

�

�x
	 +

�

�x
�Rxr

�

�r
	 +

�

�r
�Rrx

�

�x
	 +

�

�r
�Rrr

�

�r
	

�14�

where the viscous matrices, Rxx, and Rxr are given by

Rxx = 

0 0 0 0

0 4
3� 0 0

0 0 � 0

0 4
3�ux �ur 

� Rxr = 

0 0 0 0

0 0 − 2
3� 0

0 � 0 0

0 �ur − 2
3�ur 0

�
�15�

with Rrx and Rrr having analogous forms. Finally, the vector H
contains the axisymmetric source terms as given in Ref. �27�.

3.2 Thermodynamic and Nonequilibrium Considerations.
We follow conventional CFD for dilute gases by computing the
density from the equation of state, �= P / �RT�1+B���, where the
second virial coefficient B�T� accounts for real gas behavior. Data
for the second virial coefficient and its temperature derivatives
were obtained from Refs. �29,30�. We used the transport property
data as a function temperature �at P=101.325 kPa� from Refs.
�31,32�. In conventional CFD, the equilibrium internal energy
�eq�� ,T� is calculated from a reference state by integrating the
ideal-gas constant-volume specific heat CVi

and subtracting a cor-
rection term to account for real gas effects

�eq��,T� =�
Tref

T

Cvi
dT − R�T2dB

dT
�16�

This formula for �eq�� ,T� is unsatisfactory for the CFV in Fig. 2
for certain gases. For this CFV, �transit�20 �s. Vibrational relax-
ation times range from 0.0001 to 10 �s depending on gas species,
temperature, and density. Thus, the conventional CFD assumption
�=�relax/�transit=0 is a poor approximation for gases with slowly
relaxing vibrational modes, especially near the throat of the CFV
where the acceleration of the gas is largest. The increase in kinetic
energy near the CFV throat is balanced by a decrease in the inter-
nal energy of the translational and rotational modes. This reduces
the temperature Text that characterizes these modes. Because the
vibrational modes relax slowly, the temperature characterizing
them, Tvib, is significantly higher than Text. Consequently, the
value of internal energy is not accurately predicted by Eq. �16�.

To accurately predict the internal energy when Tvib�Text, we

sum the relevant molecular components including contributions
from translational, rotational, and vibrational modes5

���,Tvib,Text� � �ext��,Text� + �vib�Tvib� �17�

The second term, �vib�Tvib�, accounts for the vibrational modes.
We assume that the vibrational modes are always in internal equi-
librium with each other and we compute �vib�Tvib� by summing
the contribution of each vibrational mode

�vib�Tvib� = 
n=1

N
gnR�n

exp��n/Tvib� − 1
�18�

where gn is the degeneracy for the nth vibrational mode, �n is the
characteristic vibrational temperature for the nth mode, and N is
the number of active vibrational modes �13,14�. The first term in
Eq. �17�, �ext�� ,Text�, is called the external molecular energy,
which consists of both the translational and rotational molecular
components. Both of these components are taken to be fully
equilibrated so that Text equals the thermodynamic temperature T.
The external molecular energy can be defined by subtracting the
equilibrium vibrational energy from the equilibrium internal
energy

�ext��,Text� = �eq��,Text� − �vib�Text� . �19�

In this way �ext�� ,Text� consists only of the translational and ro-
tational components, yet retains real gas behavior that traditional
ideal gas models of the translational and rotational components
omit.

The exchange of energy between vibrational modes and the
combined translational and rotational modes was modeled using
the vibrational rate equation �13�

D�vib�Tvib�
Dt

=
�vib�Text� − �vib�Tvib�

�relax
�20�

where D /Dt is the time derivative following a fluid element of
fixed mass. Bhatia developed this equation for diatomic molecules
having only a single vibrational degree of freedom and therefore
only one relaxation time �13�. However, Eq. �20� works well for
polyatomic molecules at temperatures low enough so that only the
lowest vibrational degree of freedom is active �e.g., CO2 near
ambient temperature�. Often Eq. �20� is used to model relaxation
in sound and shock propagation through polyatomic gases, such as
SF6, where the highest vibrational modes relax quickly so that the
entire heat capacity relaxes at a single relaxation time. However,
for certain polyatomic gases �e.g., C2H6� more than one relaxation
time is needed as discussed by Lambert �33�.

For steady flow along a streamline the vibrational rate equation
is given by

�
d�vib�Tvib�

dz
= �vib�Text� − �vib�Tvib� �21�

where �=�relax/�transit is the ratio of the local relaxation time to
the local flow transit time, and z=s /L is the normalized distance
along a streamline where s is the distance along a streamline
starting at the CFV entrance, and L is the total distance along
the streamline. Here, �transit=L / �u�� is the time that it takes for a
fluid particle to move a distance L along a streamline, and �u�� is
the magnitude of average velocity over that distance. The relax-
ation time changes with the local thermodynamic conditions ac-
cording to the phenomenological Landau and Teller relation �34�

5The contribution of the electronic energy is negligible over the temperature range
of interest.
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�relax =
K1 exp��K2/Text�1/3�

P
�22�

where the constants K1 and K2 were obtained by fitting ultrasonic
relaxation data �15,16�.

3.3 Numerical Solution. The vibrational rate equation and
the Navier-Stokes equations must be solved as a coupled system
of equations. In this work these equations are solved by globally
iterating between the Navier-Stokes equations and the vibrational
rate equation until both are simultaneously satisfied. The iterative
procedure begins by solving the Navier-Stokes equations with a
guessed value of the molecular vibrational energy, �vib�Tvib�. From
the latest solution of the Navier-Stokes, the input parameters, �
=�relax/�transit and �vib�Text�, are determined for the vibrational rate
equation. Next, the vibrational rate equation is integrated along
streamlines to determine the updated vibrational energy, �vib�Tvib�,
which is used to determine the modified internal energy,
��� ,Tvib ,Text�, in the next iteration of the Navier-Stokes equa-
tions. Consequently, the Navier-Stokes solution and the vibra-
tional rate solution are co-dependent.

3.4 Numerical Solution of the Navier-Stokes Equations.
The Navier-Stokes equations are solved in a conventional body-
fitted coordinate system �35� with a physical domain equivalent to
the CFV geometry shown in Fig. 2. Grid-independent solutions
are obtained using a mesh with 201 axial grid points and 101
radial grid points. The axial grid points are uniformly spaced
while the radial grid points are spaced exponentially with a higher
grid density near the CFV wall to resolve the boundary layer.

An alternating-direction implicit �ADI� numerical algorithm
�26,27� is used for integrating the Navier-Stokes equations. Time
advancement is obtained using first-order, backward finite differ-
ences. Both inviscid and viscous time-derivative preconditioning
�36–38� are employed for accelerated convergence rates over a
wide range of Mach numbers and Reynolds numbers. Spatial dis-
cretization is accomplished using third-order up-winded flux dif-
ferences for the convective terms and central differences for the
diffusive terms. The resulting numerical scheme consists of two
tridiagonal matrices that are inverted at each time step using a
block version of the Thomas algorithm �26,27�.

In these computations boundary conditions are specified at the
CFV inlet, at the CFV exit, along the CFV wall, and on the cen-
terline. At the inlet, the stagnation pressure, stagnation tempera-
ture, and flow angle are specified. Characteristic boundary condi-
tions �39� are specified at the supersonic CFV exit. On the CFV
centerline, symmetry boundary conditions are used. The CFV wall
is taken to be adiabatic with a zero normal pressure gradient and a
no-slip velocity boundary condition.

3.5 Numerical Solution of the Vibrational Rate Equation.
In contrast to the Navier-Stokes equations, which are expressed in
a Eulerian sense, the vibrational rate equation is expressed in a
Lagrangian sense. Specifically, the vibrational rate equation de-
scribes the rate of relaxation of the vibrational modes of a gas
particle of fixed identity moving through the flow field. The La-
grangian paths of particles of fixed identity correspond to stream-
lines in the flow field. The trajectories of these streamlines must
be estimated from the Navier-Stokes solution before the vibra-
tional rate equation can be solved. In the coupling procedure be-
tween the two equation sets, the streamlines in the flow field are
computed after each time step using the most recent approxima-
tion to the Navier-Stokes solution. The vibrational rate equation is
then solved on each streamline by a space-marching procedure
that integrates between consecutive points on a streamline.

The space-marching procedure begins at the CFV inlet where
the vibrational energy on each streamline is equal to its equilib-
rium value. To find the value of the vibrational energy, �vib�Tvib�,
at the next adjacent grid point along the stream line, the vibra-
tional rate equation is analytically integrated using variation of

parameters �40�. In turn, this value of �vib�Tvib� serves as an initial
condition for the next point, and so on, until the complete stream-
line has been updated. This process is then repeated for each
streamline in the flow field.

4 Results

4.1 Validation of CFD Model. The CFD methodology fol-
lowed the procedure used for the experimental calibration, where
the mass flow was controlled by varying the stagnation pressures
in the range 50 kPa� Po�200 kPa while maintaining the stagna-
tion temperature at 298.15 K. For these operating conditions, the
corresponding Reynolds number varied from 1000 to 40,000 for
the small throat ISO standardized CFV. The CFD results were
verified by comparisons with experimental data for four gases
including He, N2, SF6, and CO2.

The experimental data shown in Fig. 1 were obtained by Ja-
pan’s national flow standard, which measures flow using a gravi-
metric timed-collection technique with an uncertainty of 0.1% �3�.
As shown in Fig. 1, the nonequilibrium CFD model predicted the
discharge coefficient to better than 0.3% for all of the gases over
the entire Reynolds number range. In agreement with experimen-
tal results, the nonequilibrium CFD model predicted larger Cd
values for SF6 and CO2—gases affected by relaxation. As ex-
pected, the nonequilibrium CFD model correctly predicted Cd for
He and N2, gases that are not influenced by vibrational non-
equilibrium.

4.2 Increase in Cd due to Vibrational Nonequilibrium
Flow. When slowly relaxing gases are used in small CFVs, the
measured mass flow exceeds the predicted value given by models
that assume �relax=0. Indeed, the discharge coefficient as defined
in Eq. �3� or �11� may even be greater than unity. To understand
this phenomenon, it is helpful to consider the limiting cases for
the ratio �=�relax/�transit. The limit �→0 is the case of equilib-
rium flow; the limit �→� is “frozen” flow in which energy in
vibrational modes remains constant. In both limiting cases, the gas
dynamic equations are uncoupled from the vibrational rate
equation.

In the limit of frozen flow, relaxation does not occur or, equiva-
lently �vib�Tvib�=�vib�To�=const throughout the flow field. Be-
cause �vib�To� is constant, the frozen flow heat capacity of the
vibrational degrees of freedom is zero �CVvib

=0�. Consequently,
the specific heat ratio for frozen flow, �fr, is larger than the equi-
librium value, �eq. The ideal gas model can be used to demon-
strate this fact. For an ideal gas, the specific heat ratio is express-
ible in terms of the translational, rotational, and vibrational heat
capacities �18�

�ideal = 1 +
R

Cvtrans
+ Cvrot

+ Cvvib

. �23�

where �fr is calculated by setting CVvib
=0. For diatomic or poly-

atomic gases, having a least one active vibrational mode, CVvib
	0 so that �fr	�eq.

The increased value of the specific heat ratio in the case of
frozen flow results in a higher sound speed in the gas than would
exist for equilibrium flow. In addition, as the gas expands and
accelerates through the CFV it cools to a lower temperature in the
case of frozen flow than it would for equilibrium flow. This lower
temperature subsequently results in a higher density. Both the
higher speed of sound and the higher density, in the case of frozen
flow, increase the mass flow through the CFV as shown by com-
bining Eqs. �1� and �2� using the larger frozen flow specific heat
ratio in place of normal value of �. Finally, in the intermediate
case of vibrational relaxation, previous CFD results have shown
that the mass flow is increased above the equilibrium value, but is
less than the frozen flow value �10�.

When vibrational relaxation is present, the discharge coefficient
as defined by either Eq. �3� or �11� is higher than would be pre-
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dicted by conventional equilibrium models. The larger discharge
coefficient results because the normalizing parameter ṁi or ṁ3
does not account for increased mass flow attributed to vibrational
relaxation. Moreover, these definitions allow values of the dis-
charge coefficient that are greater than unity �11�. To avoid this
nonphysical situation,6 the discharge coefficient should be defined
using a normalizing parameter that accounts for vibrational relax-
ation effects.

4.3 Generalizing the Critical Flow Function to Account for
Vibrational Relaxation. Vibrational relaxation can be accounted
for by generalizing the critical flow function, which itself is a
generalization of the discharge coefficient. Based on linear CFV
theory it can be shown that an effective critical flow function can
be defined as

Cs
eff � Cs

r�Cd
vib

Cd
eq 	 �24�

where Cd
vib is the discharge coefficient computed with the present

vibrational relaxation flow model, and Cd
eq is the discharge coef-

ficient computed with the equilibrium flow model.
Figure 3 shows the effective critical flow function for both CO2

and for SF6 gases as a function of �*�To , Po�=�relax
* /�transit

* where
�relax

* is evaluated at the throat conditions using Eq. �22� and
�transit

* =d /c* is the time required for a gas particle to travel one
CFV throat diameter at the speed of sound, c*=��RT*. The effec-
tive critical flow function defined in this way is valid for an ISO
standard CFV geometry for To near room temperature. For a given
gas, Cs

eff depends not only on �*, but also on Cvib/Cv= ��fr

−�eq� / ��fr−1�, the ratio of the vibrational specific heat to the total
constant-volume specific heat. This ratio, which gives an indica-
tion of the number of active vibrational modes, is strongly depen-
dent on temperature so that Fig. 3 is only valid for To near room
temperature.

The effective critical flow function defines an effective specific
heat ratio according to the relationship

Cs
eff = ��eff��eff + 1

2
	�1+�eff�/�1−�eff�

. �25�

For both gases CO2 and SF6 the effective specific heat ratio lies
between the equilibrium and frozen flow limit and can be used to
assess the degree of vibrational relaxation.

By using Cs
eff in the expression for the ideal theoretical mass

flow given in Eq. �1�, the generalized discharge coefficient ac-

counts for vibrational relaxation. The resulting Cd curves for CO2
and SF6 will then agree with analytical Cd predictions, having Cd
values that are less than unity and that scale with the Reynolds
number and the specific heat ratio.

Conclusions
A model for flow through CFVs that incorporates the influence

of the relaxation time of vibrational degrees of freedom has been
presented. The model agrees with experimental measurements of
the discharge coefficient for four gas species �including CO2 and
SF6� within 0.31% whereas prior models differed from experi-
ments by as much as 2.3%. The new model couples nonequilib-
rium thermodynamics with the equations of flow. The pertinent
quantities are the energy of vibrational modes and the ratio of the
vibrational relaxation time to the transit time for the gas to move
from the CFV entrance to its throat. The nonequilibrium phenom-
ena causes an increase in mass flow through the CFV that can be
explained by the limiting cases of “frozen” and equilibrium flow.
Linear CFV theory is introduced and used to define the appropri-
ate form of the effective critical flow function necessary to cancel
the effects of vibrational relaxation. The effective values of the
specific heat ratio and the critical flow function, presented herein,
allow a user to use calibration data performed with N2 to calculate
the flow of CO2 or SF6 through a CFV without utilizing the com-
putational model.
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Analysis of the Swirling Flow
Downstream a Francis
Turbine Runner
An experimental and theoretical investigation of the flow at the outlet of a Francis
turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft
tube pressure recovery coefficient at a discharge near the best efficiency operating point.
Laser Doppler anemometry velocity measurements were performed for both axial and
circumferential velocity components at the runner outlet. A suitable analytical represen-
tation of the swirling flow has been developed taking the discharge coefficient as inde-
pendent variable. It is found that the investigated mean swirling flow can be accurately
represented as a superposition of three distinct vortices. An eigenvalue analysis of the
linearized equation for steady, axisymmetric, and inviscid swirling flow reveals that the
swirl reaches a critical state precisely (within 1.3%) at the discharge where the sudden
variation in draft tube pressure recovery is observed. This is very useful for turbine
design and optimization, where a suitable runner geometry should avoid such critical
swirl configuration within the normal operating range. �DOI: 10.1115/1.2137341�

1 Introduction
Swirling flow behavior in various technical applications has

long been an intensive subject of research. Usually swirl effects
are seen as either the desired result of design or unavoidable,
possibly unforseen, side effects �1�. However, the hydraulic tur-
bine draft tube on one hand benefits from the swirl at the runner
outlet in order to mitigate flow detachment in the cone, but on the
other hand suffers from the flow instabilities leading to pressure
fluctuations and ultimately to the draft tube surge.

The draft tube of a hydraulic turbine is the machine component
where the flow exiting the runner is decelerated, thereby convert-
ing the excess of kinetic energy into static pressure. In the case of
machine rehabilitation of an existing power plant, mostly only the
runner and the guide vanes are currently modified. For economical
and safety reasons, the spiral casing and the draft tube are seldom
redesigned, even if these components present some undesirable
behavior. However, the installation of an upgraded runner requires
a reliable prediction of the flow in a compact draft tube in order to
avoid the peculiar and undesirable efficiency curve from Fig. 1.
The efficiency drop as the discharge is increased above the best
efficiency point value is found to be related to a corresponding
sudden variation in the draft tube pressure recovery coefficient at
the same discharge. It is this phenomenon we address in this pa-
per.

The obvious practical importance of predicting the complex
flow downstream the turbine runner, in the draft tube, led to the
FLINDT research project of Flow Investigation in Draft Tubes
�2�. The main objective of this project was to investigate the flow
in hydraulic turbines draft tubes, for a better understanding of the

physics of these flows and to build up an extensive experimental
data base describing a wide range of operating points which can
provide a firm basis for the assessment of the CFD engineering
practice in this component. The extensive experimental investiga-
tion of the draft tube flow has been complemented with three-
dimensional numerical flow simulations �3,4� aimed at elucidating
the swirling flow evolution up to the turbine outlet as well as the
phenomena that led to the peculiar sudden drop in the turbine
efficiency.

Other investigations have been mainly focused on the ability of
the CFD tools to accurately reproduce the complex three-
dimensional velocity and pressure field in draft tubes for Kaplan
turbines �5,6�. One important issue addressed in these studies was
the sensitivity of numerical results to the boundary conditions,
particularly the inlet ones.

The present paper focuses on the structure of the swirl produced
by the constant pitch turbine runner and further ingested by the
draft tube. The corresponding hydrodynamic field is a direct out-
come of the runner design and the operating point. Since changing
the runner design, while keeping the same draft tube, may lead to
an unexpected sudden efficiency drop for a certain discharge, it
would be preferable that some design criteria be put forward as far
as the runner outlet swirl is concerned. The present analysis
shapes such criteria by using relative simple mathematical and
numerical tools. Of course, the complex three-dimensional and
unsteady flow in the draft tube cannot be quantitatively predicted
only by analyzing the draft tube inlet swirl. However, if the runner
outlet swirl structure displays a sudden change with respect to
appropriate criteria, and this change occurs at a discharge close to
the experimental one where the sudden drop in turbine efficiency
is observed, these criteria should be taken into account when de-
signing or redesigning the runner.

In analyzing a swirling flow one benefits from a large body of
literature on this subject. In laboratory investigations swirl was
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generated by adjustable guidevanes, by fixed vanes similar to
those employed in combustors, or by tangential inflow through a
long slit �1�. The closest setup to the hydraulic turbine case seems
to be the adjustable radial guidevane apparatus, which has been
largely used for more than 50 years to investigate, both experi-
mentally and numerically, the so-called vortex breakdown �VB�
phenomenon �7–10�. The formulas employed in these studies to fit
both axial and circumferential velocity component radial variation
are of particular relevance for our study.

Several theoretical developments have been devoted to explain
the VB. However, a general consensus over the definition of this
phenomenon has not been reached yet. For example, Benjamin
�11� considers the VB to be a finite transition between two dy-
namically conjugate states of axisymmetric flow, analogous to the
hydraulic jump in open-channel flow. A similar definition was
later adopted by Keller �12�, who argued that various authors or
even schools have conflicting views on the correct interpretation
of the physics of VB. Leibovich �13� relates VB to a disturbance
characterized by the formation of an internal stagnation point on
the vortex axis, followed by reversed flow in a region of limited
axial extent. Goldshtik and Hussain �14� consider that VB occurs
due to solution nonuniqueness in some range of inflow parameters
when the entire steady flow experiences a jump to another meta-
stable steady state with the same boundary conditions. They stress
that VB is a loss-free process and, hence, analogies with shocks or
hydraulic jumps are misleading and must be abandoned. All theo-
ries for confined swirling flows consider axisymmetric geometries
with constant or variable cross section �e.g., slowly diverging
pipes�. It is difficult to imagine that a simplified theory could be
elaborated for a swirling flow in an actual draft tube with both
cross-section shape and area variation, as well as changes in the
flow direction. However, at least for the draft tube cone where
most of the pressure recovery occurs, swirling flow theories might
provide valuable results for design evaluation and optimization.

Mauri et al. �15,3� developed and applied original techniques to
analyze the three-dimensional flow in the FLINDT draft tube.
They explain the draft tube efficiency drop from Fig. 1 by a global
instability triggered by the flow rate increase. The topological
structure of the velocity field changes abruptly with the emergence
of a saddle point and a focus in the skin friction lines pattern on
the elbow wall, leading to a global Werlé-Legendre separation that
blocks the right channel. However, there is an important question
to be answered: is this phenomenon the primary cause of the draft
tube efficiency drop or it is one of the consequences of a corre-
sponding abrupt change in the swirling flow ingested by the draft
tube as the discharge increases? It is this question we address in

this paper, by investigating the swirling flow on the draft tube
inlet section within the general framework of vortex breakdown
theories.

In Sec. 2 we briefly present the experimental setup and measur-
ing techniques used to investigate the flow in a Francis turbine
draft tube. In this paper we examine the flow on a section at the
runner outlet/draft tube inlet. Laser Doppler anemometry has been
employed to investigate the velocity components, with particular
attention paid to the data error control.

Section 3 is devoted to the analytical representation of velocity
components radial variation. A critical analysis of swirling flow
models available in literature is followed by the development of a
model particularly suited to hydraulic turbines. It is shown that a
three-vortex system accurately represents the experimental data,
and a least squares technique is employed for computing the
model parameters. Finally, the velocity profiles are parametrized
only by the discharge coefficient, thus allowing a swirl behavior
analysis as the operating point changes continuously.

The nonlinear Long-Squire equation is used in Sec. 4 as a math-
ematical model for the swirling flow at the draft tube inlet. The
finite element method is employed to solve the corresponding
boundary value problem for the stream function.

The solution behavior is examined in Sec. 5 using the linearized
operator spectrum analysis. It was found that the critical state of
the swirl configuration, defined by Benjamin �11�, is in good
agreement with the abrupt change experimentally observed in the
draft tube pressure recovery coefficient.

The paper conclusions are summarized in Sec. 6.

2 Experimental Investigation of the Velocity Field on
the Draft Tube Inlet

The FLINDT project �2� experimental investigations were car-
ried out on a Francis turbine scaled model of specific speed 0.56
�Fig. 2�. The turbine model has a spiral casing of double curvature
type with a stay ring of 10 stay vanes, a distributor made of 20
guide vanes, a 17-blade runner of a 0.4 m outlet diameter, and a
symmetric elbow draft tube with one pier. The global measure-
ments for flow rate, head, and efficiency were performed accord-
ing to the IEC 60193 International Standard �16�.

The experimental data used in this paper were obtained with a
two-component probe Laser Doppler Anemometer �LDA�, using
back-scattered light and transmission by optical fiber, with a laser
of 5 W argon-ion source. The main characteristics of the optical
system are laser wave lengths 488/514.5 nm, probe diameter

Fig. 1 Efficiency break off obtained by increasing the dis-
charge and keeping the specific energy constant. Model test of
a Francis turbine with specific speed 0.56.

Fig. 2 Sketch of the Francis turbine model and LDA setup for
the flow survey section at runner outlet-draft tube inlet
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60 mm, beam spacing probe with beam expander 73.3 mm, focal
length 1000 mm, fringe spacing �5.3 nm, and measuring volume
�x=�y �0.2 mm, �z�6 mm.

Spherical silver-coated glass particles are introduced in the test
rig flow. These particles are hollowed in order to match the water
density and are able to follow flow fluctuations frequency up to
5 kHz �17�. The mean diameter of these particles is 10 �m.

In order to control the position of the measurement volume, a
ray tracing technique is used for calculating direct and inverse
light paths of laser beams through the different media �air, win-
dow, water�. An optical window with plane and parallel faces is
used as an interface. The measuring point geometrical location is
controlled within a 0.05 mm accuracy. Both axial and circumfer-
ential components of the velocity are measured. The uncertainties
of the velocity measurements are estimated to be 2% of the mea-
sured value �18�.

The global “efficiency” of the draft tube is quantified using the
static pressure recovery coefficient, defined as

� =
�p/� + gz�out − �p/� + gz�ref

Q2/2Aref
2 . �1�

Figure 3 presents isolines of the pressure recovery coefficient in
discharge coefficient-energy coefficient coordinates. The operat-
ing points further referenced in this paper, where full velocity
measurements are performed on the survey section from Fig. 2,
are also marked. The turbine efficiency break-off, Fig. 1, is found
to be produced by a corresponding drop in the draft tube pressure
recovery. This phenomenon occurs practically at the same dis-
charge value for a specific energy coefficient lower than 1.30.

Throughout this paper the velocity is made dimensionless by
the runner angular speed�runner outlet radius, and lengths are
made dimensionless with respect to the runner outlet radius Rref
�Fig. 2�.

In order to assess the Reynolds number influence on the veloc-
ity field at the runner outlet, the same operating point �discharge
coefficient, specific energy coefficient� has been investigated for
two runner rotational speed values, 500 and 1000 rpm, respec-
tively. The data for dimensionless axial and circumferential veloc-
ity components corresponding to the same operating point in Fig.
3 but at two runner rotational speeds are plotted in Fig. 4. Accord-
ing to the IEC 60193 Standard �16�, the characteristic Reynolds
number Re of the turbine is defined as Re=UD /�=�nD2 /60�.

The corresponding Reynolds number of the reduced scale model
is changed from 4.2�106 �at n=500 rpm� to 8.4�106 �at n
=1000 rpm� without any significant variation in the dimensionless
velocity profiles. Moreover, the axial and circumferential velocity
profiles measured at the same discharge coefficient value are not
sensitive to specific energy coefficient changes within the investi-
gated range 1.0–1.3, as one can observe Fig. 5. This led us to the
conclusion that the only relevant parameter for the investigation
further presented in this paper is the turbine discharge coefficient.

3 Analytical Representation of Axial and Circumfer-
ential Velocity Profiles

Several swirling flow models have been considered in the lit-
erature to study either the vortex stability or the vortex break-
down. We briefly review these models in order to develop a suit-
able representation for the swirl at the Francis runner outlet.
Historically, vortex flow have been first studied in unbounded
media and as a result the velocity circulation at very large distance
from the vortex axis was naturally chosen as a vortex parameter.
Since we are dealing with confined vortices, it is convenient to use
the angular velocity at the vortex axis, �. A second parameter is a
characteristic vortex radius R which measures the vortex core ra-
dial extent. These two parameters define the Rankine vortex cir-
cumferential velocity,

w�r� = ��R2

r
for r 	 R ,

�r for r 
 R
� , �2�

where r is the radial distance from the vortex axis. This simplified
model provides a continuous function for w�r�, but the derivative
is discontinuous. A rigorous theoretical foundation is provided for
the Burgers vortex �also known as the Lamb vortex�, which gives
the circumferential velocity profile as

Fig. 3 Pressure recovery isolines „thick lines… for the draft
tube investigated in the FLINDT project. The turbine operating
points „discharge coefficient-specific energy coefficient… are
shown with filled circles.

Fig. 4 Reynolds number influence on the dimensionless ve-
locity profiles at operating point with discharge coefficient
0.368 and energy coefficient 1.18
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w�r� =
�R2

r
�1 − exp	−

r2

R2
� . �3�

Formula �3� is an exact solution for a viscous vortex produced by
radial inflow and axial outflow where the conditions at large radial
distance are irrotational. The relationship between Rankine vortex
�2� and Burgers vortex �3� models can be easily seen from Fig. 6.
If we take the limit for r�R in �3� we get �r, while for r�R we
obtain �R2 /r. In conclusion, the Rankine vortex represents the
asymptotic behavior of the Burgers vortex for large and small
radius with respect to the vortex core extent R.

Both the above models consider a uniform axial velocity. It was
Batchelor �19� who pointed out that a radial variation in circum-
ferential velocity must be accompanied by a variation in the axial
velocity. He showed that in the case of a trailing vortex from one
side of a wing in an infinite body of fluid all streamlines originate
in a region where the pressure is uniform and the fluid velocity is
uniform with only an axial component U0. When a Rankine vor-
tex circumferential velocity �2� is induced by viscous effects in
the boundary layer of the wing, the axial velocity inside the vortex
core increases as

u = �U0 for r 	 R ,

U0
2 + 2�2�R2 − r2� for r 
 R ,

� �4�

Applying the same considerations for the Burgers vortex �3�, we
obtain

u2 = U0
2 +�

r


1

r2

�K2

�r
dr = U0

2 + 2�2R2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� ,

where K�rw is �2��−1 times the circulation around a symmetri-
cally placed circle and Ei1 is the exponential integral of order one.
On the axis the axial velocity is U0

2+2 ln�2��2R2, which is
smaller than the corresponding value for the Rankine vortex
U0

2+2�2R2.
Faller and Leibovich �8� have used the following axial velocity

functional form to fit their experimental data for a radial guide-
vane swirl generator,

u�r� = U0 + U1 exp	−
r2

R2
 , �5�

where U1 is the difference between the axial velocity on the axis
and the axial velocity far away from the axis, U0. Note that when
using �5� together with �3� the vortex core radius R is the same.
When R�r, Eq. �3� becomes u�r���r since limx→0�1
−exp�−x2�� /x2=1, and Eq. �5� becomes u�r��U0+U1=const.

It was specifically stated in �8� that no theoretical justification
for �5� is available. Indeed, in comparison with the axial velocity
profile obtained, according to Batchelor, within the constant total
head hypothesis

u�r�
U0

=1 + 2	�R

U0

2�Ei1	 r2

R2
 − Ei1	2
r2

R2
� , �6a�

the functional form �5� rewritten to have the same axial velocity

u�r�
U0

= 1 + �− 1 +1 + 2 ln�2�	�R

U0

2�exp	−

r2

R2
 , �6b�

seems to be completely different. However, one can easily con-
clude from Fig. 7 that �6b� is a rather good approximation for
�6a�. Obviously, �6b� or the more general form �5� is more con-
venient for analytical manipulation.

A more rigorous justification for �5� is attempted by Alekseenko
et al. �20� who consider swirling flows with helical symmetry, i.e.,
the flow characteristics conserve their values along helical lines of
pitch 2�l. For axisymmetrical �columnar� helical vortices with a
circumferential velocity as in �3� they obtain the axial velocity
profile of the form

u�r� = Uaxis −
�R2

l
�1 − exp	−

r2

R2
� , �7�

where Uaxis�U0+U1. One can identify from �7� the characteristic
velocity U1=�R2 / l, and eventually use the length l= �2��−1

�pitch instead of U1 as a free parameter.
So far we have considered only an elementary vortex represen-

tation. However, the experimental data display a more complex
structure which should be modeled by a combination of simple
vortices. There are two possibilities to consider such combina-
tions. One idea put forward by Alekseenko et al. �20� is to con-

Fig. 5 Specific energy coefficient influence on the dimension-
less velocity profiles at operating points with discharge coeffi-
cient 0.368

Fig. 6 Circumferential velocity profile for Rankine and Bur-
gers vortex models, respectively
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sider nonoverlapping regions along the radius, with piecewise
continuous vorticity distribution. The resulting velocity profiles
�both axial and circumferential� are made continuous by a proper
choice of the integration constants. Another idea was put forward
by Mattner et al. �9� who considered a sum of elementary velocity
profiles for both axial and circumferential components. Essentially
this second approach becomes equivalent to the first one if the
vortices are well separated, i.e., the characteristic radii are well
distinct one from each other.

In order to build a suitable vortex combination we should first
consider a base flow. Using the dimensionless velocity compo-
nents u and w, as well as the dimensionless runner tangential
velocity, which coincides with the dimensionless radius r accord-
ing to Sec. 2, the relative flow angle is

� = arctan
u

r − w
. �8�

Since the swirling flow examined in this paper is produced by a
constant pitch Francis turbine runner, the relative flow angle
should be consistent with an approximation corresponding to a
solid body rotation, w=�0r and u=U0. Indeed, the relative flow
angle computed from the experimental data for circumferential
and axial velocity can be reasonably fitted with �
=arctan�const/r�, as shown in Fig. 8. However, a solid body ro-
tation is a rather crude approximation of the actual velocity pro-
files. Figures 4 and 5 suggest that two Batchelor vortices, one
co-rotating and the other counter-rotating with respect to w=�0r,
and co-flowing/counter-flowing with respect to u=U0, respec-
tively, should be superimposed for consistency with experimental
data for circumferential and axial velocity profiles:

w�r� = �0r + �1
R1

2

r
�1 − exp	−

r2

R1
2
� + �2

R2
2

r
�1 − exp	−

r2

R2
2
� ,

�9a�

u�r� = U0 + U1 exp	−
r2

R1
2
 + U2 exp	−

r2

R2
2
 . �9b�

If R0 is the dimensionless survey section radius, then the discharge
coefficient can be obtained by integrating the axial velocity profile
�9b�,

� = U0R0
2 + U1R1

2�1 − exp	−
R0

2

R1
2
� + U2R2

2�1 − exp	−
R0

2

R2
2
� .

�10�

The functional forms �9� have an eight-parameter set �
��R1 ,R2 ,�0 ,�1 ,�2 ,U0 ,U1 ,U2� to be determined by fitting the
experimental data. For each operating point under consideration,
with a set of experimental data �rj ,uj ,wj�j=1, . . . ,N, the error
vector e���= �ek����, k=1,2 , . . . ,2N is defined as

ek��� = �u�rk,�� − uk for k = 1,2, . . . ,N ,

w�rk−N,�� − wk−N for k = N + 1, . . . ,2N .
� . �11�

The error vector includes both axial and circumferential velocity
data since the vortex core radii R1 and R2 correspond to both
velocity components. The parameter set is found by minimizing
�k=1

2N �ek����2, leading to a least squares estimate of �. Let �c be
the current estimate of �. A new estimate is given by �c+�c

*,
where �c

* is a solution to

�JT��c�J��c� + �cI��c
* = JT��c�e��c� . �12�

Here J��c� is the Jacobian �2N��8 matrix evaluated analytically
at �c. The iterative algorithm uses a “trust region” approach with
a step bound of �c. A solution of Eqs. �12� is first obtained for
�c=0. If ��c

*�2
�c this update is accepted. Otherwise, �c is set to
a positive value and another solution is obtained.

Swirl parameters found by fitting formulas �9� to experimental
data for 17 operating points are listed in Table 1. The last two
columns contain the values of the discharge coefficient � com-
puted with �10�, and the corresponding relative error with respect
to the measured value shown in the first column. This error is a
good indicator for the accuracy of the fit, as well as for the mea-
surements overall accuracy. We conclude that �9b� is a very good
representation for the axial velocity at the runner outlet and the
superposition of three vortices in �9a� accurately represents the
experimental data for the circumferential velocity over the whole
discharge range under investigation.

Figures 9–14 display the data as well as the curves fitted with
�9� for the first six points in Table 1. These operating points cover
the investigated discharge domain at a constant head correspond-
ing to the turbine best efficiency operating point. The quality of
the fit can be assessed by observing that most of the time the
curves approach the experimental points within the measurement

Fig. 7 Axial velocity profiles computed with „6a…—solid lines
and „6b…—dashed lines, respectively, for several values of the
dimensionless parameter aÆ�R /U0

Fig. 8 Relative flow angle computed from the experimental
data for axial and circumferential velocity components on the
survey section. The solid curve is a least squares fit consider-
ing a rigid body rotation for the circumferential velocity and a
constant axial velocity.
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errors of 2%. The wall boundary layer is not correctly reproduced
since the swirling flow model �9� was specifically built for an
inviscid flow analysis.

A main goal of this paper is to find a suitable parametric rep-
resentation for the swirling flow at the Francis runner outlet. Fig-
ure 15 shows the variation of vortex characteristic angular veloci-
ties with respect to �. Linear least squares fits accurately represent
�0��� and �1���, while for �2��� a parabolic fit seems to be
quite satisfactory. Moreover, one should note that �0 is almost
constant over the investigated operating range. The variation of
vortex characteristic axial velocities with respect to � is shown in

Fig. 16, together with the corresponding linear fits. Finally, Fig.
17 displays the dependence of the vortex core radii on �. A first
conclusion from Figs. 15–17 is that swirl parameters in �9� have a
smooth, generally linear, variation in � over the investigated
range. As a result, one obtains the velocity components as C

functionals w�r ,�� and u�r ,��, further employed in a parametric
study of the flow stability or other properties.

According to the qualitative picture of the three vortex system
presented in Table 2, Vortex 0 is a rigid body rotation with angular
speed �0 and we can associate with it a constant axial velocity
U0. Vortex 1, which has a vortex core extent about half the wall
radius, is counter-rotating and co-flowing with respect to vortex 0.
The strength of this vortex, both in �1 as well as in U1 is growing

Table 1 Swirl parameters from Eqs. „9… for 17 turbine operating points

Operating point Swirl parameters Discharge coefficient

Discharge
coefficient

Energy
coefficient

Speed
�rpm� �0 �1 �2 U0 U1 U2 R1 R2

Computed
Eq. �10� Error

0.340 1.18 1000 0.31765 −0.62888 2.2545 0.30697 0.01056 −0.31889 0.46643 0.13051 0.344 +1.1%
0.360 1.18 1000 0.26675 −0.79994 3.3512 0.31501 0.07324 −0.29672 0.36339 0.09304 0.363 +0.8%
0.368 1.18 1000 0.27113 −0.80310 3.4960 0.31991 0.08710 −0.27350 0.37291 0.08305 0.372 +1.0%
0.380 1.18 1000 0.27536 −0.81730 3.5187 0.32447 0.10618 −0.23545 0.38125 0.07188 0.381 +0.2%
0.390 1.18 1000 0.27419 −0.86579 3.2687 0.32916 0.12677 −0.19061 0.37819 0.06502 0.389 −0.2%
0.410 1.18 1000 0.28802 −0.96687 1.4590 0.33623 0.19121 −0.09215 0.39108 0.05012 0.409 −0.3%
0.368 1.00 1000 0.27710 −0.77440 3.3913 0.31704 0.08107 −0.24619 0.38128 0.08289 0.368 +0.1%
0.380 1.00 1000 0.26726 −0.83772 3.1082 0.32442 0.11387 −0.19284 0.35948 0.07312 0.380 +0.1%
0.370 1.11 1000 0.28119 −0.77668 3.5520 0.31731 0.08308 −0.25254 0.38947 0.07904 0.369 −0.1%
0.368 1.30 1000 0.29078 −0.79348 3.4239 0.31599 0.10086 −0.25499 0.39536 0.07939 0.371 +0.8%
0.380 1.30 1000 0.27618 −0.85846 3.2696 0.32691 0.12280 −0.19933 0.37413 0.06734 0.386 +1.5%
0.410 1.30 1000 0.27670 −0.96571 2.2165 0.33816 0.17829 −0.10984 0.37930 0.05021 0.407 −0.6%
0.370 1.11 500 0.27854 −0.77371 3.4491 0.31685 0.09058 −0.21118 0.38535 0.07827 0.370 +0.1%
0.340 1.18 500 0.29630 −0.67299 2.7487 0.30509 0.02987 −0.32612 0.41942 0.11679 0.345 +1.6%
0.368 1.18 500 0.27151 −0.78970 3.5902 0.31617 0.09131 −0.22465 0.37450 0.07914 0.369 +0.2%
0.380 1.18 500 0.27659 −0.79568 3.3111 0.32135 0.11063 −0.17502 0.38765 0.07002 0.379 −0.3%
0.410 1.18 500 0.28624 −0.93559 0.76010 0.33243 0.19587 −0.06119 0.39588 0.05147 0.406 −0.9%

Fig. 9 Axial and circumferential velocity profiles at discharge
�=0.340

Fig. 10 Axial and circumferential velocity profiles at discharge
�=0.360
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as the flow rate increases. Vortex 2 has a core at least four times
smaller than vortex 1, is co-rotating and counter-flowing with re-
spect to vortex 0, and its strength increases as the flow rate de-
creases. Note that as the flow rate increases �eventually beyond
the upper limit in our investigation� vortex 2 will vanish. These
two Batchelor vortices are mainly responsible for the swirling

flow behavior. For � smaller than the design value a wake-like
axial velocity is developed �Fig. 9� while for larger � the axial
velocity has a jetlike profile �Fig. 14�.

4 Swirling Flow Mathematical Model and Numerical
Approach

Theoretical analysis of swirling flows can employ tools ranging
from simplified axisymmetric, inviscid steady �11� or unsteady

Fig. 11 Axial and circumferential velocity profiles at discharge
�=0.368

Fig. 12 Axial and circumferential velocity profiles at discharge
�=0.380

Fig. 13 Axial and circumferential velocity profiles at discharge
�=0.390

Fig. 14 Axial and circumferential velocity profiles at discharge
�=0.410
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�21� flow models to full 3D laminar �10� or turbulent �22� numeri-
cal simulation. However, it is useful to first examine the swirling
flow at the draft tube inlet before performing an analysis of the
flow in the straight cone or even in the whole 3D geometry. Such
results may be quite useful if there is a correlation �even qualita-
tive� with the overall draft tube behavior over a certain range of
discharge variation.

If we restrict for now our analysis only for the runner outlet
section, several simplifications must be admitted, and the results
must be interpreted accordingly. We consider a steady mean flow
with axial and circumferential velocity profiles derived from ex-
perimental data in Sec. 3. An inviscid incompressible fluid is con-
sidered, since our swirling flow representation does not account
for the boundary layer near the wall.

The cylindrical flow assumption may not seem appropriate for
the flow in the draft tube cone shown in Fig. 2, since it is known
that the diverging pipe geometry precipitates the formation of
breakdown by creating an adverse pressure gradient along the
vortex axis. Shtern and Hussain �23� show that the nonparallel
character of jets strongly affects their stability. Flow deceleration
significantly enhances the shear-layer instability for both swirl-
free and swirling jets. Buntine and Saffman �24� study a diverging
flow using the steady axisymmetric Euler flow model. They show

that solutions fail to exist or, alternatively, that flow ceases to be
unidirectional, so that the breakdown can be inferred, when a
parameter measuring the relative magnitude of rotation and axial
flow exceeds critical values depending upon geometry and inlet
profiles. However, for slightly diverging duct of angles less than
2°, Tsai �25� shows that the flow can be considered locally parallel
for the flow stability analysis. This parallel flow assumption is not
quite restrictive even for the 8.5° cone angle considered in this
study. The diffusion process takes place only close to the wall,
leading to a thin 3D boundary layer, as it can be seen from the
measured velocity distribution �Figs. 4 and 5�. Therefore, by ne-
glecting the retarding influence of the wall, we can assume that
the bulk flow is parallel. As far as the mean flow is concerned, the
radial velocity is one order of magnitude smaller than the axial
velocity since v /u
 tan 8.5° �0.15.

Within these assumptions, the mathematical model to be con-
sidered here corresponds to the theory of finite transitions between
frictionless cylindrical flows originally developed by Benjamin
�11�. The equation of continuity for axisymmetric incompressible
flows is automatically satisfied by introducing the streamfunction
��z ,r� such that the axial and radial velocity components can be
written as

u =
1

r

��

�r
and v = −

1

r

��

�z
. �13�

When applied to a circuit around a particular stream-surface �
=const Kelvin’s theorem shows rw to be a constant. Thus in gen-
eral rw�K���, where K is a function of � alone. Also, on a
streamsurface the total specific energy H= p /�+ �u2+v2+w2� /2 is
constant by Bernoulli’s theorem, thus H is a function of � alone.
The momentum equation for the steady, axisymmetric swirling
flow becomes

1

r2	 �2�

�z2 +
�2�

�r2 −
1

r

��

�r

 = H���� −

K���K����
r2 , �14�

which is known in literature as the Long-Squire or Bragg-
Hawthorne equation. Goldshtik and Hussain �14� noted that, in
fact, Eq. �14� was derived much earlier by Meissel �in 1873�. The
prime denotes differentiation with respect to �. By introducing the
new variable y=r2 /2 Eq. �14� can be rewritten as

�2�

�y2 +
1

2y

�2�

�z2 = H���� −
K���K����

2y
. �15�

If we substitute Y1=R1
2 /2 and Y2=R2

2 /2 the axial velocity profile
�9b� can be written as

Fig. 15 Characteristic angular velocities �0, �1, and �2 ver-
sus discharge coefficient �

Fig. 16 Characteristic axial velocities U0, U1, and U2 versus
discharge coefficient �

Fig. 17 Vortex core radii R1 and R2 versus discharge coeffi-
cient �
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u�y� = U0 + U1 exp�− y/Y1� + U2 exp�− y/Y2� . �16�

Since from �13� u=�� /�y, the streamfunction for the above ve-
locity profile is

��y� = U0y + U1Y1�1 − exp�− y/Y1�� + U2Y2�1 − exp�− y/Y2�� ,

�17�

where without loss of generality we have considered �=0 on the
symmetry axis.

The discharge coefficient � from Eq. �10� can be rewritten as

� = 2U0Y0 + 2U1Y1�1 − exp�− Y0/Y1�� + 2U2Y2�1 − exp�− Y0/Y2�� ,

�18�

where Y0=R0
2 /2. As a result, at the wall we have �wall���Y0�

=� /2.
For a mean flow with negligible radial velocity, the right-hand

side in Eq. �15� is simply du /dy,

H���� −
K���K����

2y
ª � ——→

Eq. 17

y → −
U1

Y1
exp	−

y

Y1



−
U2

Y2
exp	−

y

Y2

 .

The map �→y has to be computed numerically, for example
using the Newton iterative method,

y�m+1� = y�m� +
� − ��y�m��

u�y�m��
, with initial guess y�0� = Y0

�

�/2
,

where m denotes the iteration index. Note that due to the nonlin-
earity of this map, the solution of Eq. �15� with boundary condi-
tions ��0�=0 and ��Y0�=� /2 may be nonunique. To investigate
this feature let us consider the streamfunction in �15� of the form

��z,r� = ��y� + ��̃�y�exp�i�z� , �19�

where ��y� is the base flow given by �17�, �̃�y� is a perturbation
of the base flow �Fig. 18�, and � is the axial wave number of this
perturbation.

Introducing �19� in Eq. �15� one obtains the linearized equation

d2�̃

dy2 − 	H���� −
K�2��� + K���K����

2y

�̃ =

�2

2y
�̃ . �20a�

Of course, in order to preserve the flow rate the perturbation must
satisfy homogeneous boundary conditions

�̃�0� = �̃�Y0� = 0. �20b�

Equations �20� define a generalized eigenvalue problem. The ei-
genvalues �2 can be computed numerically once the problem is
discretized. The expression inside square brackets on the left-hand
side can be easily evaluated once an analytical swirl representa-
tion is available:

C�y� � H���� −
K�2��� + K���K����

2y
=

1

u

d2u

dy2 −
K

2y2u2

dK

dy
.

�21�

If we consider a grid y0=0,y1 , . . . ,y1 , . . . ,yN ,yN+1=Y0 and a

piecewise linear approximation of the solution �̃�y��� j�̃ jNj�y�,
the finite element discretization of problem �20� can be written in
matrix form as

A�̃ = �2B�̃ , �22a�

where �̃ is the nodal values vector, and

Aij = −� dNi�y�
dy

dNj�y�
dy

dy −� Ni�y�C�y�Nj�y�dy ,

�22b�

Bij =� Ni�y�Nj�y�
2y

dy

are N�N tridiagonal symmetric matrices. Obviously the matrix
entries in �22b� are evaluated only for the N interior nodes, due to
the homogeneous Dirichlet conditions �20b�. The GVCSP proce-
dure from the International Math and Statistics Libraries �IMSL�
�26� is used here to compute all of the eigenvalues and eigenvec-
tors of the generalized real symmetric eigenvalue problem �22a�,
with B symmetric and positive definite.

Let us summarize now the swirling flow model according to the
synoptic Fig. 18. Once the analytical representation for axial and
circumferential velocity components has been established, the
mean flow streamfunction can be computed. A streamtube �

=const may be subject to axisymmetric perturbations ��̃, which
are the eigenfunctions of problem �20�. Such a perturbation can be

Table 2 Swirling flow structure

Vortex 0 Vortex 1 Vortex 2

Circumferential
velocity

rigid body rotation counter-rotating co-rotating

Axial velocity constant co-flowing counter-flowing
Vortex core
radius

— �0.4R0 �0.1R0

Fig. 18 Synoptic view of the model for swirling flow down-
stream of a Francis turbine runner
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sustained or not depending on the sign of the corresponding ei-
genvalue �2, according to the analysis to be presented in the next
section.

5 Analysis of the Swirling Flow
An important property of the swirling flows downstream a con-

stant pitch hydraulic turbine runner is that the relative flow angle
depends only on the blade exit angle provided that the flow re-
mains attached. This is certainly the case for a turbine runner
operating in the neighborhood of the best efficiency point, there-
fore we can expect that the relative flow angle remains practically
independent for the operating points of interest in this study.
Moreover, due to negligible retarding forces, the global moment
of momentum of the flow at the runner outlet should remain con-
stant in the cone. Therefore, the relative flow angle �8� should
depend only on the streamtube, i.e., on the normalized stream-
function � / �� /2� �Fig. 19�. In other words, the relative flow angle
on the survey section at runner outlet is practically constant on a
streamtube originating at the same radius on the blade trailing
edge, being determined by the blade exit angle irrespective of the
discharge. This shows the direct correlation between the runner
blade design and the kinematics of the swirl on the draft tube
inlet. Moreover, the significant changes in the circumferential and
axial velocity profiles can be associated only with the stream-
tube’s cross-section variation downstream the blade trailing edge,
as the discharge is modified.

The above considerations on the relative flow angle �8� help us
understand the striking feature that the flow rotates in some radius
range in the opposite direction to that at smaller and larger radii.
Since the relative flow angle remains constant on a streamtube, an
increase in the dimensionless axial velocity u must be accompa-
nied by an increase in the dimensionless relative circumferential
velocity r-w. In consequence, as the axial flow accelerates, i.e., a
jetlike axial velocity profile is developed when the discharge in-
creases, the corresponding absolute circumferential velocity w be-
comes negative in order to increase r-w, thus keeping u / �r-w�
practically constant in Eq. �8�.

A global quantitative description of the swirling flow is pro-
vided by the swirl number S defined as the axial flux of swirl
momentum divided by the axial flux of axial momentum ��27�,
p. 2�,

S =

�
0

R0

�u�rw�rdr

R0�
0

R0

��u2 + p − pR0
�rdr

, �23a�

where pR0
is the pressure at the wall. The pressure term in �23a�

can be evaluated using the equation of radial equilibrium,

�p

�r
=

�w2

r
⇒ p − pR0

= −�
r

R0 �w2

r
dr . �23b�

The swirl number computed for the swirling flow given by �9�,
with parameters from Figs. 15–17, is plotted versus the discharge
coefficient in Fig. 20. One can see that for the investigated range
of � the swirl number decreases as the discharge increases, but
nevertheless the variation is smooth.

More interesting and useful conclusions can be drawn from the
analysis of eigenvalues �2 and the corresponding eigenvectors in
�20�. If �2
0, then � is imaginary and the exponential factor in
�19� will be exp�±���z�. As we move downstream the current sec-
tion, z�0, the only physically acceptable solution corresponds to

exp�−���z�, showing an exponential damping of �̃. A swirl con-
figuration for which all eigenvalues are negative is unable to sus-
tain axisymmetric small-disturbance standing waves and it was
termed supercritical by Benjamin �11�. On the other hand, if at
least one eigenvalue �2 is positive, then the perturbation will take
the form of a standing wave exp�±i�z�, and the corresponding
flow is termed subcritical. All physical interpretations attempted
for the distinction between supercritical and subcritical states were
mainly focused at the vortex breakdown phenomena. Benjamin’s
original interpretation was that for a given distribution of H���
and K��� one possible state of flow is subcritical and the conju-
gate state is supercritical. A deduction of this theory is that, com-
pared with their conjugates, supercritical flows possess a defi-
ciency of total momentum defined as the integral of axial
momentum flux plus pressure over a cross section. This property
would imply that supercritical flows are liable to undergo sponta-
neous transitions to subcritical state. Later, this theory came under
quite heavy criticism, mostly because of its lack of explaining the
axial flow reversal associated with the vortex breakdown. For ex-
ample, Hall �28� particularly disagrees with the hydraulic jump
analogy. Leibovich �29� considers that the most serious weakness
of Benjamin’s theory is that there is no clear way to relate it to
experiments which, at high Reynolds numbers, always have un-
steady, non-axisymmetric wakes. A decade ago Keller �12�

Fig. 19 Relative flow angle on streamtubes
Fig. 20 The swirlnumber S from „23a… versus the discharge
coefficient �
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pointed that various authors or even schools have conflicting
views on the correct interpretation of the physics of vortex break-
down. Moreover, in his opinion, Benjamin’s theory already con-
tained most ideas for a successful theory of axisymmetric vortex
breakdown but it was missing the definition of the total head
circulation in regions with flow reversal, i.e., beyond the upstream
interval of streamfunction values. The stagnation model emerged,
where the total head is uniform and circulation vanishes in the
domain of flow reversal, and was lately employed by Rusak et al.
�30� to examine axisymmetric vortex breakdown in a finite length
pipe. They present a comprehensive study of the Burgers vortex
behavior, using both steady and unsteady axisymmetric inviscid
flow models. Using essentially the same linearized eigenvalue
problem, they determined the critical swirl level above which the
base solution will evolve downstream to a solution that is a global
�not local� minimizer of a certain functional. The flow in the pipe
is computed explicitly, thus supporting the conclusions. However,
no attempt has been made to directly correlate the computational
results with any experimental data.

The approach we take in this paper is to examine the transition
of the swirling flow downstream a Francis turbine runner from
subcritical to supercritical as the discharge coefficient increases
and to correlate the critical state with the experimentally observed
sudden drop in the draft tube pressure recovery coefficient. A
similar approach was advocated by Goldshtik and Hussain �14�
who consider that vortex breakdown necessarily occurs when so-
lution nonuniqueness is achieved by a continuous change in flow
parameters. Moreover, we consider that valuable insight might be

gained also by examining the eigenmodes �̃ corresponding to
positive eigenvalues.

Let us examine first the main result of this paper, inferred from
Fig. 21. For ��0.365, and correspondingly smaller swirl num-
bers, all eigenvalues from �20� are negative, thus the flow is su-
percritical and cannot sustain axisymmetric standing waves. How-
ever, for �
0.365 the largest eigenvalue becomes positive,
followed by the next eigenvalues as � decreases, and the flow is
subcritical with standing waves described by the corresponding

eigenvectors �̃. The critical state occurs according to our compu-
tations at �=0.365. This discharge value is quite close �only 1.3%
smaller� to the value of �=0.37 where the sudden drop in draft
tube pressure recovery coefficient is observed. It seems reasonable
to assume that the critical state is directly related to this experi-
mentally observed phenomenon, since by trying several draft tube
geometries while keeping the same runner �and the swirling flow�
the same behavior has been observed practically at the same dis-
charge. While reaching the critical swirl configuration seems to be

the cause, the actual physical mechanism by which the pressure
recovery suffers an abrupt change cannot be inferred from the
present analysis. Experimental �2� as well as numerical �3,4� in-
vestigations offer a comprehensive analysis of the Francis turbine
draft tube flow.

Several eigenmodes �̃�r� corresponding to the largest eigen-
value for subcritical flows are shown in Fig. 22. Since the eigen-
modes are defined up to a multiplicative constant, it makes no
sense to have marks on the vertical axis. One can easily see that as
the discharge coefficient decreases the support of the eigenmode
shrinks toward the axis neighborhood. It means that the induced
velocity perturbations, for example their real part

ũ =
d�̃

dy
cos��z� and ṽ =

��̃

2y
sin��z� ,

are confined closer to the axis as � decreases. Moreover, the rela-
tive amplitude of the perturbation increases since � gets larger
�leading to larger ṽ� and also the slope at the origin increases
�leading to larger ũ� on the axis. Although no vortex breakdown
bubble is observed in the draft tube cone, the above velocity per-
turbations can be related to the axial velocity deficit reduction
further downstream. This mechanism of reducing the “wakelike”
axial velocity nonuniformity might be responsible for the im-
provement in the draft tube overall performance as the discharge
gets smaller than the critical value. For even smaller discharge,
more eigenmodes are successively present. For example, Fig. 23
presents the first two eigenmodes at �=0.348, corresponding to
the two positive eigenvalues. While the first eigenmode is con-
fined near the axis, the second one is not, but its behavior will
follow the same pattern when further decreasing the discharge.

6 Conclusions
The present work started from the idea that the swirling flow

configuration at the outlet of a Francis turbine runner has a major
influence on the overall behavior of the flow downstream in the
draft tube.

We have investigated experimentally the velocity axial and cir-
cumferential components at the runner outlet for 17 operating
points within the turbine normal operating range. Then, a suitable
analytical representation of the velocity profiles is developed, with
the turbine discharge as an independent parameter. It is shown that
the swirling flow in the survey section can be accurately repre-
sented using a superposition of three distinct vortices: a rigid body
rotation motion, a counter-rotating and co-flowing Batchelor vor-
tex with large core radius, and a co-rotating and counter-flowing
Batchelor vortex with small vortex core. The eight parameters of

Fig. 21 The first four eigenvalues and the pressure recovery
coefficient function of the discharge coefficient

Fig. 22 Eigenmodes corresponding to the largest „positive…
eigenvalue for subcritical swirling flows
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this three-vortex system are determined by fitting the experimental
data and are shown to vary smoothly �generally linear� with the
discharge coefficient.

The flow at the runner outlet is then analyzed using the math-
ematical model for a steady, axisymmetric, and inviscid swirling
flow. Following Benjamin’s theory of finite transitions between
frictionless cylindrical flows, we have performed an eigenvalue
analysis of the linearized problem. It is shown that the swirl
reaches a critical state at discharge �=0.365. For larger discharge
the flow ingested by the draft tube is supercritical, while at lower
discharge it is subcritical. The critical state occurs quite close to
the discharge �=0.370 where a sudden variation in the draft tube
pressure recovery, as well as in the overall turbine efficiency, is
experimentally observed. For the particular turbine under investi-
gation this discharge value happens to correspond to the best ef-
ficiency point, leading to a negative impact on the turbine regula-
tion.

A qualitative correlation between the swirling flow at the draft
tube inlet and the complex flow behavior further downstream may
be inferred in conjunction with the Werlé-Legendre separation in
the bend, discovered by Mauri et al. �15�. For subcritical swirling
flow the sustained axisymmetric waves weaken the integrity of the
vortex core, thus preventing the interaction with secondary flows
in the draft tube bend. As the swirling flow reaches the critical
state, and becomes supercritical as the discharge increases, the
vortex core is no longer affected by axisymmetric perturbations,
thus being able to trigger a global Werlé-Legendre separation that
blocks the right channel of the draft tube and accelerates the flow
in the other channel. The static pressure recovery is strongly af-
fected, leading to an important loss in the overall machine effi-
ciency.

Our analysis leads to the conclusion that when designing or
optimizing turbine runners one should avoid reaching a critical
state for the swirl at the runner outlet within the normal operating
range.
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Nomenclature
Aref � reference section area

H � Bernoulli’s total head
K � circulation function
Q � turbine discharge

R0 � survey section radius
Rref � reference section radius

R1 ,R2 � vortex core radii
S � swirl number

U0 ,U1 ,U2 � vortex characteristic axial velocities
p � pressure
r � radial coordinate

u , ũ � axial velocity and its perturbation
v , ṽ � radial velocity and its perturbation

w � circumferential velocity
y � auxiliary variable
z � axial coordinate, aligned with the vertical ma-

chine axis
�0 ,�1 ,�2 � vortex characteristic angular velocities

� � relative flow angle
� � draft tube wall pressure recovery coefficient
� � wave number
� � streamfunction
� � Q /�RrefAref discharge coefficient
� � density
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Since knowledge on hydrodynamic torque of a butterfly valve is
very important for butterfly valve design, its hydrodynamic torque
is investigated theoretically. For this, a recently developed two-
dimensional butterfly valve model is solved through the free-
streamline theory with a newly devised iterative scheme and the
resulting two-and three-dimensional torque coefficients are com-
pared with previous theoretical results based on the conventional
butterfly valve model and experiments. Comparison shows that the
improvement due to the new butterfly valve model is marginal.
That is, the three-dimensional torque coefficient is well repre-
sented by the new model. Otherwise, the two-dimensional torque
coefficient is well predicted by the conventional model. In spite
this fact, the present results can be used in further researches on
butterfly valves because the improved butterfly valve model is
mathematically correct and reflects physical reality more correctly
than the conventional valve model. �DOI: 10.1115/1.2137348�

Keywords: butterfly valve, valve design, hydrodynamic torque

1 Introduction
The butterfly valve is widely used in various industrial applica-

tions for on-off and throttling services because it is easily closed
or opened with relatively low pressure drop. In designing a but-
terfly valve, knowledge on its hydrodynamic torque is required for
actuator sizing and structural design.

To the authors’ best knowledge, a only theoretical study on
hydrodynamic torque of the butterfly valve is given by Sarpkaya

�1,2�. Based on a two-dimensional butterfly valve model, the flow
field in the valve was solved by a free-streamline theory �3� with
successive conformal transformations and contraction coefficients,
force and torque coefficients were obtained. It is well known that
the free-streamline theory is suited to analyze the plane irrota-
tional flow field that includes free or bounded jets. Recently, Has-
senpflug �4� suggested a new two-dimensional butterfly valve
model that is more precise mathematically and physically than
that of Sarpkaya �1,2�. The major difference between two models
is an introduction of minimum velocity �see Fig. 1� that is located
in the upper bounding wall to reflect four parameters in the
hodograph plane �4�. Based on the new model, Hassenpflug �4�
solved the problem with the free-streamline theory and found con-
traction coefficient but, unfortunately, the hydrodynamic torque of
the butterfly valve was untouched. Since the hydrodynamic torque
characteristic is an important parameter in designing a butterfly
valve, in the present study, the hydrodynamic torque is investi-
gated based on the improved valve model and the result is com-
pared with that of Sarpkaya �2� and recent experiments �5,6�.

2 Free-Streamline Theory
In order to determine the hydrodynamic torque that works on

the two-dimensional butterfly valve, whole pressure distribution
on a valve plate is required and this means that a complete flow
field should be solved. Therefore, an application of the free-
streamline theory is also made in the present study.

The free-streamline theory is composed of successive confor-
mal transformations from a physical plane to a complex potential
one. The unique feature of the theory is the introduction of a
velocity plane, the hodograph. In the hodograph, an unknown
free-streamline is transformed to a circular arc exactly and further
conformal transformations can be done easily. In the present
study, z �physical�, w �hodograph�, � �logarithmic hodograph�,
and t �Schwarz-Christoffel� planes are used. Equations �1�–�3� and
Figs. 1–4 show corresponding transform functions and planes,
respectively:

w = u − iv = qe−i� �1�

� = ln
w

VJ
= ln

q

VJ
− i� �2�

� = M�
0

t

�t − tCI
�−1/2�t − tDI

�−1/2�t − tE�1�t − tDII
�−1/2�t − tCII

�−1/2dt

+ N �3�

where w��dF�z� /dz� is complex velocity, F�z�����x ,y�
+ i��x ,y�� is complex potential with velocity potential ��x ,y� and
stream function ��x ,y�, z��x+ iy� is a complex number, i�
��−1� is an imaginary number, u and v are velocity components
in the x and y directions, respectively, q���u2+v2� is magnitude
of velocity, ���tan−1�v /u�� is an angle, and VJ is a jet velocity
between wall boundary and free-streamline. M and N are con-
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stants of the Schwarz-Christoffel transformation and tCI
, tDI

, . . .
are parameters of the Schwarz-Christoffel transformation.

The complex potential F in the t plane is easily deduced by
noting that a source of strength 2�Vo and sinks of strength 2nVJ
and 2mVJ are located at points tA, tDI

, and tDII
, respectively. It is

given by

F�t� =
2�Vo

2�
ln�t − tA� −

2nVJ

2�
ln�t − tDI

� −
2mVJ

2�
ln�t − tDII

�

=
VJ�

2�
�1 − sin ����Cc1 + Cc2�ln�t − tA� − Cc1 ln�t − tDI

�

− Cc2 ln�t − tDII
�� �4�

where Vo is an inlet velocity of channel, � is a plate length and
channel width, n and m are thickness of upper and lower jets, Cc1
and Cc2 are upper and lower contraction coefficients, and � is a
valve closing angle. For Eq. �4�, a continuity of mass and defini-
tion of contraction coefficients are used:

�Vo = nVJ + mVJ �5�

Cc1 �
2n

� − � sin �
and Cc2 �

2m

� − � sin �
�6�

Finally, an implicit solution can be determined as

z�t� = −
�

2�
�1 − sin �� � e−�� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt

+ const �7�
where

dz

dF
=

1

VJ
e−�

and

dF

dt
=

VJ�

2�
�1 − sin ���Cc1 + Cc2

t − tA
−

Cc1

t − tDI

−
Cc2

t − tDII

	
have been used.

3 Solution Procedure
Although the two-dimensional butterfly valve model is solved

conceptually in the previous section, this is not the case. One
should determine proper Cc1, Cc2, and Schwarz-Christoffel pa-
rameters such as tCI

, tDII
, and tCII

including complex constants M
and N to complete the solution. In the present study, determination
of corresponding parameters is done numerically through the fol-
lowing iterative procedure.

• Step 1. Assume VJ /VMIN to fix a configuration of trans-
formed region in the � plane.

• Step 2. Solve Schwarz-Christoffel parameter problem. Pa-
rameters such as tCI

, tDII
, and tCII

including M and N are
solved by numerical algorithm of Chung, et al. �7�. Values
of tDI

, tE, and tB are fixed as 0, 1, and ±�, respectively. Table
1 shows the calculated Schwarz-Christoffel parameters for
various closing angles. Note that closing angles of 0 and
90 deg cases are excluded in the calculation.

• Step 3. Assume tA value and find Vo /VJ and Cc1+Cc2 asso-
ciated with tA. Schwarz-Christoffel transformation deter-
mined in Step 2 is used for finding Vo /VJ since ��tA�
=ln�Vo /VJ�. Cc1+Cc2 is determined as

Cc1 + Cc2 =
2

�1 − sin ��
Vo

VJ
. �8�

• Step 4. Determine Cc1 and Cc2, respectively, by the follow-
ing equations �see Appendix A�.

Cc1 =

1 −
1

�
�

tCI

tDI

e−�R sin �I� 1

t − tDII

−
1

t − tA
	dt�Cc1 + Cc2�

1 +
1

�
�

tCI

tDI

e−�R sin �I� 1

t − tDI

−
1

t − tDII

	dt

�9�

Fig. 1 Two-dimensional butterfly valve model „z plane…

Fig. 2 Hodograph „w plane…

Fig. 3 Logarithmic hodograph „� plane…

Fig. 4 Schwarz-Christoffel transformation „t plane…
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Cc2 =

1 −
1

�
�

tDII

tCII

e−�R sin �I� 1

t − tDI

−
1

t − tA
	dt�Cc1 + Cc2�

1 −
1

�
�

tDII

tCII

e−�R sin �I� 1

t − tDI

−
1

t − tDII

	dt

�10�

where �R is a real part and �I is an imaginary part of �.
Cc1+Cc2 determined in Step 3 is used here.

• Step 5. Compare Cc1+Cc2 determined in step 3 with Cc1
+Cc2 obtained in step 4. If the difference between these two
values is within a predetermined error bound, proceed to
next step. Otherwise, go to step 3 again and try another tA
value.

• Step 6. Calculate tA from tDII
, Cc1, and Cc2 which were

determined at steps 2 and 4, respectively. A relation among
them is given as follows �see Appendix B�:

tA =
Cc2tDII

Cc1 + Cc2
. �11�

• Step 7. Compare tA determined in step 6 with tA assumed in
step 3. If the difference between these two values is within a

predetermined error bound, proceed to next step. Otherwise,
go to step 1 again and try another VJ /VMIN value.

• Step 8. Determine lu and ld with variables obtained in the
previous steps �see Appendix B� and verify �= lu+ ld to
check solution quality.

lu =
��1 − sin ��

2� sin �
�

−�

tCI

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt

�12�

ld =
��1 − sin ��

2� sin �
�

tCII

+�

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt

�13�

where lu is a length from a stagnation point B to CI and ld is from
B to CII.

Table 2 shows determined parameters of the two-dimensional
butterfly valve model for various closing angles. One can note that
the present calculation agrees well with that of Hassenpflug �4�.

Table 1 Parameters of Schwarz-Christoffel transform

� tCI
tDII

tCII
M N

0 ¯ ¯ ¯ ¯ ¯

5 −0.00257906512251 5.16772774261455 251.37036829504729 −1.00000000021639 0.00000000000000
10 −0.00268265764988 5.06471845671051 64.12536160056500 −1.00000000000000 0.00000000000000
15 −0.00274481375813 4.92286680162222 29.32203997791210 −1.00000000000000 0.00000000000000
20 −0.00276261168564 4.74812305914738 17.10017335921508 −1.00000000000000 0.00000000000000
25 −0.00272843500847 4.54770620137642 11.42548158028952 −1.00000000000000 0.00000000000000
30 −0.00263713925367 4.32850438304937 8.33504784312660 −1.00000000000000 0.00000000000000
35 −0.00248528120954 4.09709918892896 6.46838537135951 −1.00000000000000 0.00000000000000
40 −0.00227229233408 3.85956841452090 5.25594457556547 −1.00000000000000 0.00000000000000
45 −0.00200257474524 3.62133137548344 4.42489100810807 −1.00000000000000 0.00000000000000
50 −0.00168654216178 3.38716391998115 3.83086788553041 −1.00000000000000 0.00000000000000
55 −0.00134123768751 3.16121003062576 3.39133383630574 −1.00000000000000 0.00000000000000
60 −0.00098982880739 2.94697152569338 3.05599796072864 −1.00000000000000 0.00000000000000
65 −0.00065987892850 2.74723758023603 2.79257688221188 −1.00000000000000 0.00000000000000
70 −0.00037973471009760 2.56396916883108543 2.57950814874032676 −1.00000000000000 0.00000000000000
75 −0.00017305181135684 2.39816032527879861 2.40208354604927172 −1.00000000000000 0.00000000000000
80 −0.00005127533678435 2.24974515396132983 2.25031897642927925 −0.99999999999998 0.00000000000000
85 −0.00000518578360261 2.11763826731841664 2.11766164626554610 −1.00000000000000 0.00000000000000
90 ¯ ¯ ¯ ¯ ¯

Table 2 Parameters of the two-dimensional butterfly valve

� VJ /VMIN VJ /Vo Cc1 Cc2 Cc1 �4� Cc2 �4� lu /� ld /� �lu+ ld� /� ld /� �4�

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 0.0000
5 1.1946 1.1699 0.9630 0.9098 0.9630 0.9098 0.9999 0.00008347 1.0000 0.000083

10 1.4242 1.3721 0.9287 0.8352 0.9286 0.8352 0.9988 0.001115 0.9999 0.00112
15 1.6973 1.6157 0.8968 0.7733 ¯ ¯ 0.9952 0.004743 0.9999 ¯

20 2.0251 1.9126 0.8672 0.7220 0.8672 0.7220 0.9873 0.01260 0.9999 0.0126
25 2.4234 2.2798 0.8396 0.6797 ¯ ¯ 0.9740 0.02588 0.9999 ¯

30 2.9151 2.7410 0.8140 0.6453 0.8140 0.6453 0.9548 0.04514 0.9999 0.0452
35 3.5338 3.3310 0.7901 0.6180 ¯ ¯ 0.9296 0.07036 0.9999 ¯

40 4.3314 4.1025 0.7678 0.5970 0.7678 0.5970 0.8989 0.1010 0.9999 0.1010
45 5.3903 5.1389 0.7469 0.5818 0.7469 0.5818 0.8638 0.1361 0.9999 0.1362
50 6.8485 6.5786 0.7275 0.5720 0.7275 0.5720 0.8252 0.1748 1.0000 0.1748
55 8.9496 8.6653 0.7093 0.5670 ¯ ¯ 0.7842 0.2157 0.9999 ¯

60 12.1577 11.8632 0.6922 0.5661 0.6922 0.5661 0.7421 0.2578 0.9999 0.2578
65 17.4454 17.1445 0.6763 0.5688 ¯ ¯ 0.6997 0.3002 0.9999 ¯

70 27.1434 26.8393 0.6614 0.5742 0.6614 0.5742 0.6578 0.3422 1.0000 0.3422
75 48.0565 47.7515 0.6475 0.5817 ¯ ¯ 0.6168 0.3831 0.9999 ¯

80 107.7647 107.4600 0.6345 0.5905 0.6345 0.5905 0.5770 0.4230 1.0000 0.4230
85 430.1348 429.8307 0.6224 0.6004 0.6224 0.6002 0.5380 0.4618 0.9998 0.4617
90 � � 0.6110 0.6110 0.6110 0.6110 0.5000 0.5000 1.0000 0.5000
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4 Torque Coefficient
To calculate the hydrodynamic torque of the two-dimensional

butterfly valve, a pressure distribution on the plate should be ob-
tained first. Application of the Bernoulli equation to lower plate
segment BCII gives

p

	
+

1

2
q2 = const =

1

2
VJ

2. �14�

Rearranging,

p

1/2	VJ
2 = 1 − � q

VJ
	2

. �15�

Since q /VJ=exp��R�t��, determination of �R�t� spanning t from
t= tCII

to +� gives a pressure distribution on the lower plate seg-
ment. For the upper segment, a similar procedure should be fol-
lowed. Figure 5 shows pressure distributions on the plate at vari-
ous representative valve closing angles. By using the pressure
distribution, a moment arm �c with respect to the valve plate
center for a specific closing angle is computed as

�c =

�
0

�

p�s��s − 1/2��ds

�
0

�

p�s�ds

�16�

where s is a coordinate along the plate length and a numerical
integration is performed by Simpson’s one-third rule �8�. Finally,
a hydrodynamic torque coefficient Tc of the two-dimensional but-
terfly valve is obtained by �2�

Tc �
T

	
�2VJ
2 =

1

2 sin �
�1 −

Vo

VJ
	2

�c �17�

where T is the hydrodynamic torque, 	 is the density of fluid, and

 is the unit depth of plate. To verify the accuracy of numerical
integration, force coefficient Fc determined by numerical integra-
tion of the pressure and the analytical method are compared. Fc is
given by �2�

Fc �
F

	VJ
2�


=�
0

�
p�s�
	VJ

2

ds

�
=

1

2 sin �
�1 −

Vo

VJ
	2

�18�

where F is the force on the valve plate. Table 3 shows calculation
results of moment arm, torque, and force coefficients of Hassen-
pflug’s two-dimensional butterfly valve model at various closing

angles. Through comparison of Fc �numerical� with Fc �analyti-
cal�, one can evaluate the accuracy of the present numerical inte-
gration.

5 Discussion
The two-dimensional torque coefficient of the butterfly valve

determined by Hassenpflug’s �4� model is compared with that of
Sarpkaya �2� in Fig. 6. Experimental data obtained by Sarpkaya
�2� are also included in the figure. It shows that although the
overall tendency of torque coefficient with respect to the closing
angle is similar in two models, the torque coefficient based on the
Hassenpflug model is deviates more from the experiment than that
of Sarpkaya. This is interesting because Hassenpflug’s model is
mathematically more precise than Sarpkaya’s and is believed to
reflect physical reality more closely �4�. Actually, as mentioned by
Hassenpflug �4�, Sarpkaya’s model itself cannot give a unique
stagnation point on the valve plate and, to resolve this anomaly,
Sarpkaya applied the uniqueness of stagnation point in solving the
problem.

Present results are also compared to the three-dimensional but-
terfly valve experiments �5,6�. For this, the two-dimensional
torque coefficient Tc should be transformed to the three-

Fig. 5 Pressure distributions at various closing angles

Table 3 Moment arm, torque, and torce coefficients

� �c Tc Fc�numerical� Fc�analytical�

0 0.00000 0.00000 0.00000 0.00000
5 −0.13887 0.016802 0.12096 0.12098

10 −0.11904 0.025210 0.21179 0.21177
15 −0.10088 0.028299 0.28051 0.28052
20 −0.084411 0.028096 0.33285 0.33284
25 −0.069561 0.025934 0.37284 0.37283
30 −0.056292 0.022711 0.40344 0.40344
35 −0.044575 0.019028 0.42689 0.42689
40 −0.034382 0.015296 0.44487 0.44487
45 −0.025688 0.011783 0.45869 0.45869
50 −0.018452 0.0086606 0.46935 0.46935
55 −0.012619 0.0060274 0.47764 0.47764
60 −0.0080984 0.0039206 0.48412 0.48412
65 −0.0047713 0.0023342 0.48921 0.48921
70 −0.0024865 0.0012263 0.49318 0.49318
75 −0.0010690 0.00053041 0.49618 0.49618
80 −0.00032247 0.00016069 0.49831 0.49831
85 −0.000030083 0.000015029 0.49957 0.49958
90 0.00000 0.00000 0.50000 0.50000

Fig. 6 Two-dimensional torque coefficient, Tc
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dimensional counterpart. Sarpkaya �2� suggested a three-
dimensional torque coefficient of butterfly valve Tc3 as

Tc3 �
T

	D3VJ
2 �19�

and showed that it is related to the two-dimensional torque coef-
ficient as

Tc3 =
8

3�
Tc. �20�

Tc3 suggested by Sarpkaya �2� is easily linked to two kinds of
widely used three-dimensional torque coefficients as follows:

Tc3A = 2Tc3�VJ

Vo
	2

�21�

Tc3B = 2Tc3
1

�1 − Vo/VJ�2 �22�

where

Tc3A �
T

1/2	D3Vo
2 and Tc3B �

T

D3�PLoss

are torque coefficients normalized by dynamic pressure and static
pressure drop, respectively �6�, and �PLoss is a pressure loss ac-
cross the valve. In deriving Eq. �22�, �PLoss�1/2	KVo

2 with K
= �VJ /Vo−1�2 is used �2�. Here, K is the loss coefficient of the
butterfly valve. Figures 7 and 8 compare the two different calcu-
lations of Tc3A and Tc3B with experimental data. Unlike Tc, Tc3A
based on Hassenpflug’s model is better compared with experi-
ments than Sarpkaya’s model. For Tc3B case, both model predic-
tions are not so good as the Tc3A case. But, here again, Hassenp-
flug’s model gives a better fit for Solliec and Danbon’s �6�
experiment. Noting that the pressure loss is included in the defi-
nition of Tc3B and Tc3B is more likely to be influenced by an
accuracy of pressure measurement across the valve, experimental
uncertainty may be a source of such discrepancy.

As shown before, the two- and three-dimensional torque coef-
ficients based on the Hassenpflug model did not show a great
improvement over the two- and three-dimensional torque coeffi-
cients based on Sarpkaya’s. In spite of this fact, the present result
can be used as a cornerstone in developing any further research on
butterfly valves because the present result is obtained by a more
improved butterfly valve model.

Appendix A: Derivation of Cc1 and Cc2

The implicit solution of the two-dimensional butterfly valve is
given by Eq. �7� as

z�t� = −
�

2�
�1 − sin �� � e−�� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt

+ const. �A1�

Then, it follows that

z�tDI
� − z�tCI

� = −
�

2�
�1 − sin ���

tCI

tDI

e−�� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt . �A2�

Let z�tDI
�−z�tCI

�=x+ iy and �=�R+ i�I. Then y becomes

y =
�

2�
�1 − sin ���

tCI

tDI

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt . �A3�

Cc1 is given by

Cc1 =
2n

� − � sin �
�A4�

where n is a normal distance from upper wall to upper streamline
that is given by

n = 1
2��1 − sin �� − y , �A5�

From Eqs. �A3�–�A5�, it follows that

Cc1 = 1 −
1

�
�

tCI

tDI

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt .

�A6�

Finally, applying Cc2=Y −Cc1 to Eq. �A6� and rearranging it with
respect to Cc1 gives

Fig. 7 Three-dimensional torque coefficient, Tc3A
Fig. 8 Three-dimensional torque coefficient, Tc3B

194 / Vol. 128, JANUARY 2006 Transactions of the ASME

Downloaded 03 Jun 2010 to 171.66.16.155. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Cc1 =

1 −
1

�
�

tCI

tDI

e−�R sin �I� 1

t − tDII

− −
1

t − tA
	dtY

1 +
1

�
�

tCI

tDI

e−�R sin �I� 1

t − tDI

−
1

t − tDII

	dt

�A7�

where Y �Cc1+Cc2.
For Cc2, a similar procedure reproduces Eq. �10�.

Appendix B: Derivation of ld and a Relationship Among
tA, tDII

, Cc1, and Cc2

To seek a relationship among tA, tDII
, Cc1, and Cc2, one consid-

ers an exact equation for the plate lower length ld first. It is deter-
mined as follows:

z�+ �� − z�tCII
� = −

�

2�
�1 − sin ���

tCII

+�

e−�� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt . �B1�

Let z�+��−z�tCII
�=x+ iy and �=�R+ i�I. Then, y becomes

y =
�

2�
�1 − sin ���

tCII

+�

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt

�B2�

and finally ld�=y / sin �� is given by

ld =
�

2�

�1 − sin ��
sin �

�
tCII

+�

e−�R sin �I� Cc1

t − tDI

+
Cc2

t − tDII

−
Cc1 + Cc2

t − tA
	dt . �B3�

Through a similar procedure, one can also determine lu. Now,
determine the functional form of integrand of Eq. �B3� as t→
+�. For this, ��t� should be considered first. ��t� is given by

��t� = −�
0

t �t − tE�
��t − tCI

��t − tDI
��t − tDII

��t − tCII
�
dt . �B4�

For large t�t� tI tCII
�0�, Eq. �B4� is rewritten as

��t� = −�
0

tI �t − tE�
��t − tCI

��t − tDI
��t − tDII

��t − tCII
�
dt

−�
tI

t �t − tE�
��t − tCI

��t − tDI
��t − tDII

��t − tCII
�
dt


 �� − ��i −�
CII

tI �t − tE�
��t − tCI

��t − tDI
��t − tDII

��t − tCII
�

�dt − ln�t� + ln�tI� �B5�

where ��tCII
�= ��−��i is used. Since ��t�=�R�t�+ ��−��i for t

� tI tCII
, it follows that

�R�t� = − ln�t� + ��tI� �B6�

�I�t� = � − � �B7�

where ��tI� is given by

��tI� � ln�tI� −�
CII

tI �t − tE�
��t − tCI

��t − tDI
��t − tDII

��t − tCII
�
dt .

Application of Eqs. �B6� and �B7� to the integrand of Eq. �B3�
yields

integrand = eln�t�e−��tI� sin�� − ��� Cc1

t − tDI

+
Cc2

t − tDII

−
�Cc1 + Cc2�

t − tA
	

= e−��tI� sin����Cc1tDI
+ Cc2tDII

− �Cc1 + Cc2�tA

t

+ O� 1

t2	� �B8�

for t→ +�. For existence of Eq. �B3�, the above integrand should
more rapidly decay than 1/ t as t→ +�. Therefore, the leading
order term of Eq. �B8� should be zero. That is,

Cc1tDI
+ Cc2tDII

− �Cc1 + Cc2�tA = 0 �B9�

This gives the relation among tA, tDII
, Cc1, and Cc2 as follows:

tA =
Cc2tDII

Cc1 + Cc2
�B10�

where tDI
=0.
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Introduction
A concept of the laminar flowmeter is based on the well-known

relationship between laminar flow rate of fluid Q through a mea-
suring element of length L and pressure drop �P. Usually the
measuring element is a capillary tube, capillary tube bundle, par-
allel plate bundle, or concentric annular duct �Fig. 1�.

The pressure drop in the measuring element �“long duct”� con-
sists of two components:

�P =
C��L

2ADh
2 Q +

K��

2A2 Q2 �1�

where: C is a constant �depends on a duct cross-section shape�, A
is the duct cross-sectional area, Dh is the hydraulic diameter of the
duct, K� is the incremental pressure drop number in a fully devel-
oped flow region �depends both on the duct cross-section shape
and on the inflow conditions�, L is the distance between the flow-
meter pressure taps, � is fluid density, and � is fluid kinematic
viscosity.

The first component on the right-hand side of Eq. �1� is the
pressure drop in the fully developed flow. The second one de-
scribes some additional pressure drop due to momentum change
and accumulated increment in wall shear between developing flow
and developed flow �1�. It is seen that the relationship between
produced differential pressure �P and flow rate Q is not linear. As
a result, in the majority of commercial laminar flowmeters, to
obtain precise Q values software corrections are required. In some
of the commercial “laminar flow elements” the entrance effect is
ignored as a relatively low one. In order to eliminate the necessity
of reading corrections and to achieve inherent linearity the second
term of Eq. �1� must be removed. It can be done by locating the
first pressure tap P1 at the beginning of the fully developed flow
region. As the entrance length Le increases with the Reynolds
number �Re=DhQ / �A���, the distance between the duct entrance
and the pressure tap P1 should not be shorter than the entrance
length for the maximum flow rate, i.e., for the laminar-turbulent
transition Reynolds number.

The main aim of this work was to determine the design recom-
mendation for the inherently linear laminar annular-duct flowme-
ter. The pressure distribution along the annular duct was mea-
sured. The entrance lengths for various inlet conditions and
Reynolds numbers were investigated.

Theoretical Background
A solution of the continuity and momentum equations for the

steady-state laminar fully developed flow of the Newtonian fluid
in a concentric annulus provides us with the formula for the C
constant in Eq. �1�:

C =
64�D − d�2�D2 − d2�

D4 − d4 − �D2 − d2�2/ln�D/d�
�2�

where �see Fig. 2� d is the cylinder diameter and D is the tube
internal diameter.

For a narrow annular duct we have limd→D C=96, which is the
well-known value for parallel plates. One may examine that for
D /d�1.2 the ratio CFLAT /CANNULAR�1.000 55. It means that the
flow rate, even in a relatively “wide” annulus, can be calculated
from an equation valid for the developed flow between parallel
plates. If the first pressure tap of our flowmeter is located behind
the entrance length Le, the second component of the right-hand
side of Eq. �1� will not exist. In this case the flow rate Q can be
calculated using the simple linear relationship between Q and �P:

Q =
2ADh

2

C��L
�P �3�

in which C=96 �for D /d�1.2�, Dh=D−d, and A=��D2−d2� /4.
As Eq. �3� is valid for a laminar flow and for a flowmeter having
correctly located pressure tap P1 it is very important to check the
Reynolds number and the hydrodynamic entrance length Le limit
values.

Experimental Setup
The experimental flowmeter test section is shown in Fig. 2. Air

of precisely controlled temperature �23±0.2°C� and of known
barometric pressure was used as a working fluid. An annular duct
was formed between 215 mm long circular cylinders �stainless
steel� of diameter d=28.000±0.005 mm and inner surface of cali-
brated thick-walled tube �polymethylmatacrylate� of diameter D
=30.23±0.01 mm. Both the cylinder and tube surfaces were pol-
ished and their diameters were precisely measured at 23°C. Two
stainless steel turning covers and a special holding system were
used to obtain rigid and concentric cylinder-tube connection. As a
result, the obtained eccentricity was less than 0.1 mm. The inlet
edge of the cylinder was rounded with the radius of about R
=0.3 mm. Two test sections were investigated. The first one was
equipped with a short �14 mm� upstream chamber receiving air

1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the

JOURNAL OF FLUIDS ENGINEERING. Manuscript received May 6, 2004; final manuscript
received September 1, 2005. Review conducted by Joseph Katz.

Fig. 1 Laminar flowmeters: „a… capillary tube, „b… capillary
tube or parallel plate bundles, „c… concentric annular duct, and
„d… concentric annular duct inherently linear
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from the stub pipe 15 mm in diameter through four orifices each
8 mm in diameter. The air entering the gap was strongly disturbed
�Fig. 2�. The second one �not shown here� had a 3.3D long up-
stream chamber �tube of diameter D without the stub pipe� pro-
ducing moderately disturbed inflow conditions. The tube of the
test section was equipped with a set of 23 pressure taps having
0.7 mm diameter. Distances between adjoining taps were 5 mm.
The first pressure tap was located precisely at the gap inlet.

Pressure drop �P was measured with the electric micromanom-
eter, and flow rate Q was measured with the calibrated laboratory
rotary gasmeter. Uncertainty evaluation of the final results was
performed in accordance with a 95% confidence interval to satisfy
ISO document �2�. Uncertainty of the pressure difference mea-
surement �P was estimated to be ±2% for low and ±1% for
moderate and high flow rates. Uncertainty of the volume flow rate
measurement Q was about ±1.5% for low, ±1% for moderate, and
±0.5% for high flow rates. In the region of Re�1000 the uncer-
tainties of Re and Le were estimated to be ±3.5% and ±5.5%,
respectively. For Re�1000 they were ±2.5% and ±4.5%.

Results and Discussion
As the diameter ratio is D /d=1.0796�1.2 we may neglect the

curvature effect and treat the annular duct as the parallel plates
�C=96 in Eq. �3��.

Limit Value of the Reynolds Number. In Fig. 3 the experi-
mental data of the friction factor in the fully developed region for
a strongly disturbed inflow condition versus Reynolds number are
shown. It is seen that below the Reynolds number of Re�1900
our experimental data agree very well with the laminar theory for
the parallel plate flow. This Reynolds number is considerably
lower �probably due to strong inflow disturbances� than the results
of Beavers et al. �3� who determined the laminar-turbulent transi-
tion Reynolds number within the range from 2200 to 3400.

Hydrodynamic Entrance Length. A definition of the hydro-
dynamic entrance length Le proposed by Sparrow and Lin �4� was
used, i.e., the length Le required to achieve the local incremental
pressure drop number as about 98% of the incremental pressure
drop number in the fully developed region K�.

In Fig. 4 the dimensionless pressure drop distribution �P*

= �Px=0− Px� / Pd along the duct for various Reynolds numbers and
a graphic representation of the dimensionless entrance length Le

*

=Le /Dh as well as the value of K� are shown �where Pd
=0.5��Q /A�2, x is distance from the duct entrance�. The available
data concerning the hydrodynamic entrance length for the flow
between parallel plates �Table 1� and the measured entrance length
for strongly and moderately disturbed inlet flows are presented in
Fig. 5. The experimental relationship Le

*= f�Re� seems to be linear
and typical for laminar duct flow. Sudden change in the slope of
the experimentally obtained entrance length at Re=2200 is attrib-

Fig. 2 Test section „not in scale…

Fig. 3 Friction factor vs. Reynolds number „for the fully devel-
oped region…

Fig. 4 Exemplary pressure drop distribution along the duct

Fig. 5 Hydrodynamic entrance length „literature data: undis-
turbed inflow; our experimental data: disturbed inflow…
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uted to laminar-turbulent transition. Higher values of Le
* are ob-

served for the disturbed inflow conditions. In this case the flow is
likely not only in the course of developing flow but also in the
process of damping of the large inlet disturbances. Moreover,
some elongation of the entrance length is plausibly attributed to
the flow separation from the cylinder edge and to the “vena con-
tracta” phenomenon. As a result the measured pressure drop en-
trance length is larger than the theoretical values obtained for
undisturbed inflow conditions �Table 1�. As it is seen in Fig. 5 the
dimensionless entrance length Le

* at the Reynolds number Re
=1900 is about 32 for the moderately disturbed inlet flow and
about 35 for strongly disturbed inlet flow. The last value is the
recommended distance from the duct inlet to the place in which
the first flowmeter pressure tap should be located.

Concluding Remarks
The inherently linear annular-duct-type laminar flowmeter �Fig.

1�d�� was investigated with air. To achieve the inherent linearity a
proper location of the upstream pressure tap �Le

*�35� and the
Reynolds number below Re	1900 are required. The flow char-
acteristics of the flowmeter can be obtained theoretically using Eq.
�3� for D /d�1.2 and neither calibration nor software reading cor-
rection are necessary. This device can be relatively easily de-
signed and produced in any laboratory workshop.
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Author�s� Le
* Remarks

Chen �5� �p. 154�
0.395

0.02 Re + 1
+ 0.01325 Re Integral momentum method

Chen �5� �p. 157�
0.315

0.0175 Re + 1
+ 0.011 Re Finite differential method

Shah �6� 0.25+0.0125 Re Correlation for straight duct of arbitrary
but constant cross section

Atkinson et al. �7� 0.3125+0.011 Re Theory: linear combination of creeping
flow and boundary layer solution for

uniform entrance velocity profile
Heaton et al. �8� 0.0099 Re Based on the data tabulated by Shah and

London �1�
Coney and
El-Shaarawi �9�

0.0147 Re Based on the data tabulated by Shah and
London �1�

This paper 0.0161 Re Moderately disturbed inflow
This paper 2.11+0.0168 Re Strongly disturbed inflow
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With the goal of intensifying turbulent free convection from heated
vertical plates to cold gases, five binary gas mixtures are exam-
ined in this technical note. Helium (He) is chosen as the principal
gas while xenon (Xe), nitrogen �N2�, oxygen �O2�, carbon dioxide
�CO2�, and methane �CH4� are the companion gases. From ther-
mal physics, the thermophysical properties affecting turbulent free
convection of binary gas mixtures are the viscosity �mix, the ther-
mal conductivity �mix, the density �mix, and the heat capacity at
constant pressure Cp,mix. Invoking the similarity variable transfor-
mation, the system of two nonlinear differential equations is
solved numerically by the shooting method and a fourth-order
Runge-Kutta-Fehlberg algorithm. From the numerical tempera-

ture fields, the allied mean convection coefficients h̄mix/B chang-
ing with the molar gas composition w in the w domain [0, 1] are
plotted in congruous diagrams for the five binary gas mixtures
under study. �DOI: 10.1115/1.2137349�

Keywords: vertical plate, turbulent free convection, binary gas
mixtures, maximum mean convection coefficient

1 Introduction
If a vertical plate is long enough, the free convection boundary

layer at some point will undergo a transition from laminar to
turbulent. The change may begin at a relatively low Grashof num-
ber around Grx=107, where a viscous instability occurs that am-
plifies any disturbances to the laminar free convection boundary
layer. The amplified waves travel along the vertical plate, growing
in the way up until they turn large to trigger bursts of turbulence,
which then cascade in the downstream region into full turbulent
free convection boundary layer flow. The theory of free convec-
tion instability is discussed at length in a review paper by Gebhart
�1�. A literature search reveals that the most notable theoretical
predictions of turbulent free convection of air along a vertical

plate have been done by Eckert and Jackson �2�, Bailey �3�, Kato
et al. �4�, Noto and Matsumoto �5�, Mason and Seban �6�, and
Henkes and Hoogendoorn �7�.

The present technical note explores the attributes of selected
binary gas mixtures �instead of air� for the cooling of heated ver-
tical plates with turbulent free convection. We employed helium
�He� as the primary gas and carbon dioxide �CO2�, methane
�CH4�, nitrogen �N2�, oxygen �O2�, and xenon �Xe� as the second-
ary gases to form five binary gas mixtures. Using the similarity
variable method, the system of Navier-Stokes and energy equa-
tions for turbulent Grashof numbers Grx�109 is transformed into
a system of two nonlinear differential equations. The shooting
method with an efficient fourth-order Runge-Kutta-Fehlberg algo-
rithm is utilized to solve the system of nonlinear differential equa-
tions. Using the Matlab software, an interactive solution scheme is
implemented in which successive calculation sweeps of the turbu-
lent free convection boundary layers are performed to obtain the
turbulent velocity and temperature fields of the binary gas mix-
tures. The computed temperature fields for each binary gas mix-
ture are post-processed and presented in terms of the allied mean

convection coefficient h̄mix/B varying with the molar gas compo-
sition w of in the proper w domain �0, 1�.

2 Model Equations
Based on the boundary layer approximations, the system of

mass, momentum, and energy equations for turbulent free convec-
tion of a Boussinesqian gas along a heated vertical plate is �1�

�u

�x
+

�v
�y

= 0 �1�

u
�u

�x
+ v

�u

�y
=

�

�y
��� + �M�

�u

�y
� + g��T − T�� �2�

u
�T

�x
+ v

�T

�y
=

�

�y
��	 + �H�

�T

�y
� �3�

The boundary conditions for no-slip velocity and prescribed wall
temperature are

at y = 0: u = v = 0, T = Tw �4�

as y → �: u → 0, T → T� �5�

Using the standard stream function 
�x ,y�

u =
�


�y
, v = −

�


�x
�6�

Noto and Matsumoto �5� implemented the similarity variable
method for air. The dimensionless similarity variable �, the di-
mensionless stream function f , and the dimensionless temperature
� are expressed as

� =
y

x
�ufcx

�
, f�x,�� =




�ufcx�
, ��x,�� =

T − T�

Tw − T�

�7�

where ufc is the so-called equivalent free convection velocity

ufc = �g��Tw − T��x �8�

With this background, the system of partial differential equations
�1�–�3� is transformed into the following pair of nonlinear ordi-
nary differential equations

�1 +
�M

�
	 �3f

��3 + �3

4
f +

�

��
��M

�
	� �2f

��2 −
1

2
� �f

��
	2

+ � = 0 �9�
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� 1

Pr
+

1

PrT

�M

�
	 �2�

��2 + �3

4
f +

1

PrT

�

��
��M

�
	� ��

��
= 0 �10�

which incorporates the local similarity concept that �f /�x
=�� /�x=0. Similarly, the boundary conditions in Eqs. �4� and �5�
are rewritten as

at  = 0: f =
�f

�
= 0, � = 1 �11a�

as  → �:
�f

�
→ 0, � → 0 �11b�

To integrate Eqs. �9�–�11�, additional information about �a� the
eddy viscosity of momentum �M, �b� the Prandtl number Pr, and
�c� the turbulent Prandtl number PrT is required. For �M, Kato et
al. �4� recommended the eddy viscosity profile

�M

�
= 0.4y+
1 − exp�− 0.0017�y+�2�� �12�

The Prandtl numbers of the binary gas mixtures, Prmix�w�, have to
be calculated beforehand. In this context, the molar gas composi-
tion wi of a binary gas mixture is defined as the mass fraction of
the gas i:

wi =
xiMi

Mmix
, i = 1,2 �13�

where xi is the mole fraction of the gas i, Mi is the molar mass of
the gas i, and Mmix=x1M1+x2M2 is the molar mass of the binary
gas mixture �8�. For low Prandtl number fluids �Pr�1�, like me-
tallic liquids and binary gas mixtures, a Prandtl number effect on
the turbulent Prandtl number PrT is observable �9�. The correlation
equation that fits the available experimental data is

1

PrT
=

1

2PrT,�
+ CPr

�M

	
� 1

2PrT,�
− �CPr

�M

	
	2

��1 − exp�−
1

CPr��M/	��PrT,�
	� �14�

where PrT,� is the value of PrT far away from the plate and C is an
experimental constant.

3 Computational Procedure
The numerical solution procedure consists of four sequential

steps. First, for a given binary gas mixture, values of the molar
gas composition w are chosen in the proper domain �0, 1�. Sec-
ond, the thermophysical properties mix, �mix, �mix, and Cp,mix for
the binary gas mixture are evaluated at the film temperature Tf
= �Ts+T�� /2. The formulas recommended in the physico-
chemistry literature are found in �10�. Third, knowing the imposed
temperature difference Tw−T�, a fixed location of the axial coor-
dinate x establishes the local Grashof number Grx. Fourth, the
system of two nonlinear differential equations �9� and �10� is
solved numerically in the � direction by the shooting method with
a fourth-order Runge-Kutta-Fehlberg algorithm �11�. The conver-
gence criterion was set at 10−6. Using the Matlab software, an
interactive solution scheme is implemented in which successive
calculation sweeps of the turbulent free convection boundary lay-
ers are performed to obtain the turbulent velocity and temperature
fields of the binary gas mixtures.

4 Numerical Results
Let qw�x� be the local wall heat flux at the vertical plate, which

may be obtained from the numerical temperature field T�x ,y� as

qw�x� = − ��w�
�T�x,0�

�y
= − ��w�

�Tw − T��
x

� ufcx

��w�
�− ���0��

�15�
Alternatively, from Newton’s equation of cooling,

qw�x� = h�x,w��Tw − T�� �16�

where h�x ,w� is the local convection coefficient. Combining Eqs.
�15� and �16�, the explicit expression for h�x ,w� turns out to be

h�x,w� = − ��w�
�ufc

�x
���w�

�w�
�− ���0�� �17�

Here, the dimensionless wall temperature gradient ���0� is a func-
tion of the Prandtl number Prmix�w� for the specific binary gas
mixtures.

Next, the mean convection coefficient h̄�w� is computed from
its definition:

h̄�w� =
1

L�0

L

h�x,w�dx �18�

Owing that air is a commonly used fluid in cooling applica-
tions, air seems to be the logical fluid choice to validate the nu-
merical turbulent velocity and temperature fields of the binary gas
mixtures. In this context, a remarkable agreement exists between

the numerical mean Nusselt number Nu¯ L and the experimentally

measured Nu¯ L obtained by Warner and Arpaci �12� for air �Pr
=0.71� spreading over a large Rayleigh number subinterval Rax

�1012.
It is instructive to contrast the turbulent free convection char-

acteristics of the five binary gas mixtures: He–Xe, He–N2,
He–O2, He–CO2, and He–CH4 against those of standard air at
the same film temperature for Grx�109 �the baseline case�. The
figure format adopted illustrates the magnitude of the allied con-

vection coefficient h̄mix/B on the ordinate and the molar gas com-
position w on the abscissa. The constant B is a function of the
gravity acceleration g, the vertical plate length L, and the tempera-
ture difference Ts−T�, because the thermal expansion coefficient
�=1/T�. Notice that the grouping of these quantities is unrelated
to the thermo-physical properties of the binary gas mixtures. This

facilitates the reinterpretation of the ratio h̄mix/B as an allied mean
convection coefficient of the binary gas mixtures. In addition, the
figure includes a horizontal line, indicative of the allied convec-

tion coefficient for air, h̄a /B, the so-called baseline case.
The allied mean convection coefficients for air and He are

h̄a /B=37.5 and h̄He/B=55, respectively. It may be seen in Fig. 1
that a remarkable maximum allied mean convection coefficient

h̄mix,max/B=85 is furnished by the He–Xe gas mixture at an opti-
mal molar gas composition of wopt=0.93. Relative to air, the heat

transfer enhancement �h̄mix,max− h̄a� / h̄a delivered by the He–Xe
gas mixture is of the order of 127%. It may also be seen that the
He–Xe gas mixture outperforms the pure He gas by a margin of
55%. The trio of He–CH4, He–O2, and He–N2 gas mixtures does
not attain a maximum for the allied mean convection coefficient

h̄mix/B in the w domain �0, 1�. The other gas mixture He–CO2
furnishes an imperceptible maximum for the allied mean convec-

tion coefficient h̄mix/B. Besides, it may be realized that the com-
parison between pure CO2 and air is meaningless because their
four thermophysical properties are very similar.

5 Conclusions
For turbulent free convection along a heated vertical plate, it

has been demonstrated that the allied mean convection coefficient

h̄mix/B for He-based binary gas mixtures increases with incre-
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ments of the molar mass difference between the primary He gas
and the secondary gases Xe, N2, O2, CO2, and He–CH4. For a
case study described by a film temperature of 300 K, the He–Xe
gas mixture emerged as the better gas candidate among the group
of five binary gas mixtures tested. Based on the encouraging re-
sults, it is expected that the outcome of this paper will serve as a
“proof-of-concept” for engineering analysis, design, and optimiza-
tion.

Nomenclature
Cp � heat capacity at constant pressure Jm−3 K−1

f � dimensionless stream function 
 in Eq. �7�
g � acceleration of gravity, ms−2

Grx � local Grashof number, g��Tw−T��x3 /�2

GrL � Grashof number, g��Tw−T��L3 /�2

h � local convection coefficient, Wm−2 K−1

h̄ � mean convection coefficient, Wm−2 K−1

L � length of vertical plate, m
Nux � local Nusselt number, hx /�

Nu¯ L � mean Nusselt number, h̄L /�
Pr � Prandtl number, �Cp /��

PrT � turbulent Prandtl number, �M�H
qw � local wall heat flux, Wm−2

Rax � local Rayleigh number, GrxPr
RaL � Rayleigh number, GrLPr

T � temperature, K
Tw � wall temperature, K
T� � free-stream temperature, K

u, v � axial and transversal velocity, ms−1

ufc � equivalent free convection velocity in Eq. �8�,
ms−1

x, y � axial and transversal coordinates, m
y+

� wall transversal coordinate, �y /����w,x /�
w � molar gas composition of binary gas mixture

wopt � optimal molar gas composition of binary gas
mixture

Greek Letters
	 � thermal diffusivity, m2 s−1

� � coefficient of thermal expansion, K−1

�H � eddy diffusivity of heat m2 s−1

�M � eddy viscosity of momentum, m2 s−1

� � thermal conductivity, Wm−1 K−1

� � viscosity, �Pa s
� � kinematic viscosity, m2 s−1

� � dimensionless T, Eq. �7�
� � density, kg m−3

�w � wall shear stress, Nm−2

� � dimensionless y, Eq. �7�

�x ,y� � stream function, u=�
 /�y, v=−�
 /�x, m2 s−1

Subscripts
a � air

max � maximum
mix � mixture of binary gases

x � axial location
w � wall
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Fig. 1 Variation of the allied mean convection coefficient
h̄mix/B with the molar gas composition w for the five binary gas
mixtures at a film temperature of 300 K
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Erratum: “Two-phase Flow in Jet Pumps for Different Liquids”
†Journal of Fluids Engineering, 2005, 127„5…, pp. 1038–1042‡

S. Mikhail, Hesham A. M. Abdou, and Mohsen Abou-Ellail

The name of the third author was omitted from the paper:

Mohsen Abou-Ellail
Ph.D.
Mechanical Power Engineering, Cairo University,
Cairo, Egypt
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Erratum: “Numerical Simulation of Two-Phase Flow in Injection Nozzles:
Interaction of Cavitation and External Jet Formation”

†Journal of Fluids Engineering, 2003, 125„6…, pp. 963–969‡

Weixing Yuan and Günter H. Schnerr

The sign “−” at the right side of Eq. �16� is missing. It should read “= −”.

The first line of the text in the second column on p. 965, should read “water” not “meter”.
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